The Herschel Space Observatory and its Scientific Legacy Matt Griffin, Cardiff University

PMO April 15 2016

Conversion of Stellar Radiation and Accretion Energy to FIR

Herschel Science

Cosmic Infrared Background

Astron. Astrophys. 308, L5-L8 (1996)

ASTRONOMY AND ASTROPHYSICS

Letter to the Editor

Tentative detection of a cosmic far-infrared background with COBE

J.-L. Puget¹, A. Abergel¹, J.-P. Bernard¹, F. Boulanger¹, W.B. Burton², F.-X. Désert¹, and D. Hartmann^{2,3}

THE ASTROPHYSICAL JOURNAL

1998 THE COBE DIFFUSE INFRARED BACKGROUND EXPERIMENT SEARCH FOR THE COSMIC INFRARED BACKGROUND: I. LIMITS AND DETECTIONS

M.G. Hauser¹, R.G. Arendt², T. Kelsall³, E. Dwek³, N. Odegard², J.L. Weiland², H.T. Freudenreich², W.T. Reach⁴, R.F. Silverberg³, S.H. Moseley³, Y.C. Pei¹, P. Lubin⁵, J.C. Mather³, R.A. Shafer³, G.F. Smoot⁶, R. Weiss⁷, D.T. Wilkinson⁸, and E.L. Wright⁹ Received 1998 January 6; accepted 1998 June 3

Previous Infrared Space Missions

IRAS	ISO	AKARI	Spitzer
(1983)	(1995)	(2006)	(2003)

- 0.6-m telescope •
- T = 2 K
- λ = 12, 25, 60, 100 μm
- 0.6-m
- T = 2 3 K
- $\lambda = 12, 25, 60, \quad \bullet \quad \lambda = 3 200 \ \mu m$
- 0.6-m
- T = 6 K
- $\lambda = 2 200 \ \mu m$
- 0.85-m
- T = 4 K
- $\lambda = 3 180 \ \mu m$

Herschel Summary

- Telescope:
 - D = 3.5 m
 - T = 85 K
- Three instruments
 - HIFI, PACS, SPIRE
 - Cameras:
 - 6 bands 70 500 μm
 - Spectrometers:
 - **52 670** μm

Bightness Bightness

- Launched (with *Planck*): May 14 2009
- Finished operation: April 29 2013

3-Band Camera

250, 350, 500 μm (simultaneous)

 $\begin{array}{ll} \underline{\text{Imaging FT Spectrometer}} \\ 195 - 670 \ \mu\text{m} \ (\text{simultaneously}) \\ \lambda/\Delta\lambda &= 1200 - 300 \ (\text{high-res}) \\ &= 50 - 15 \ (\text{low res}) \end{array}$

7-channel Heterodyne Receiver 480 - 1250 GHz (625 - 240 μm) 1410 - 1910 GHz (212 - 157 μm) $\lambda/\Delta\lambda = 10^5 - 10^6$

Instantaneous BW: 4 GHz

<u>3-Band Camera</u> 70, 100, 160 μm (2 simultaneous)

Imaging Grating Spectrometer 55 - 210 μm $\lambda/\Delta\lambda = 1000 - 4000$

Build-up of the Herschel Satellite

Heterodyne Receiver (HIFI)

Grating Spectrometer (PACS)

Fourier Transform Spectrometer (SPIRE)

Herschel Spectrometers: Wavelength Coverage

Bolometer Detectors

SPIRE Bolometer

• 18 institutes in eight countries

The Official SPIRE Logo

SPIRE Logo

The Official The Unofficial SPIRE Logo SPARE

Herschel Instruments

Preparation for Acoustic Test

Fully Assembled Satellite

Launch Site: French Guiana

Some Herschel Results

Herschel Sky Coverage

SPIRE/PACS Parallel PACS Phot	6.4% 0.7%
SPIRE Phot PACS Spec	2.3% <0.01%
SPIRE Spec	<0.01
HIFI	0.06%
Total	9.5%

Total observing time: 23,400 hrs

All Herschel data are public via the *Herschel Science Archive* (HAS)

SPIRE-PACS Parallel Mode

- Scan map with SPIRE and PACS
- Simultaneous 5-band mapping (3 SPIRE and 2 PACS bands)

The Herschel Science Archive

Panéls						🧭 Query 🛛 🔕 Cancel 🛛 🚍 (
ain Query Panel						
Observation Id G	-	Obs. List G			Choose	
Proprietary Status 🕼	Anv	-				
Geometry Panel						
Target \ Multiple Ta	arget \ NAIF ID \ N solve Name	Multiple NAIF IDs \	🔿 Equa	Itorial	🔘 Galactic	🔿 Ecliptic
Circle Cent	the Wanted Incolain					
() Box	the coordinates	Target @	SIMEAD	•		Radius @ 5 ARCMINUTES V
Struments Query I Instrument Ot All HIFI PACS	Panel bs. Type: @ HIFI \ Single Point Mapping	Target @	SPIRE Photomater Spectrometer	SPIREPACS		Radius @ S ARCMINUTES .
Struments Query F Instrument Ot All HIFI PACS SPIRE SPIREPACS	Panel bs. Type: @ HIFI Single Point Mapping Spectral Scan	Target @	SPIRE Photometer Spectrometer	SPIREPACS Parallel Mode		Radius 🕼 🕤 🕼 KCMINUTES 🕷
Box struments Query I Instrument Ot All HIFI PACS SPIRE SPIRE SPIREPACS Instruments Advant ser Provided Data Pr	Panel bs. Type: @ HIFI \ Single Point Mapping Spectral Scan ced Query Panel roducts Panel (U	Target @	SPIRE Photometer Spectrometer	SPIREPACS Parallel Mode		Radius @ 5
Struments Query I Instrument Ot All HIFI PACS SPIRE SPIREPACS	Panel bs. Type: @ HIFI Single Point Mapping Spectral Scan ced Query Panel roducts Panel (U el Query Panel	Target @	SPIRE Photometer Spectrometer	SPIREPACS		Radius 🕼 🗊

Elliptical Galaxies

Visible

Herschel

1998 Ground-based 5 galaxies after 20 nights

To scale

250 µm

GOODS-N: 250/350/500 µm

350 µm

500 µm

10 arcmin

$3-\sigma$ Extragalactic Confusion Fluctuations

Extragalactic Surveys with PACS and SPIRE

Resolution of the Cosmic Infrared Background

Numerous PACS and SPIRE results compiled by Lutz, 2013

Luminosity Function Evolution

ATLAS lenses confirmed with CO redshifts

SPIRE Spectroscopy of Lensed Galaxies

- L_[CII]/L_{dust} higher than in local ultra-luminous IR galaxies
- Star formation intensity similar to that of local ULIRGs but distributed over a larger volume
 - Not likely to be merger-driven

PACS Spectroscopy of a Lensed High-z Galaxy MIPS J1428 z = 1.3 $\mu \approx 8$

⇒ High-z galaxies can have high luminosities without being major mergers Sturm et al. 2011

PACS Spectroscopy of a Lensed High-z Galaxy

Sturm et al., 2010

- ULIRG luminosity (SFR ~ 300 M_☉/yr)
- But no [OI]/FIR deficit like local ULIRGs
- UV intensity, density, and SFE typical of a normal SB galaxy
 - But much larger gas reservoir
- High-z galaxies can have ULIRG luminosities without being major mergers

Look-back Time vs. Redshift

HFLS3

- z = 6.34
- Lookback time
 ~ 13 Gyr
- Massive, dusty galaxy only 800 Myr after Big Bang
- Discovered with Herschel and followed up with ground-based optical, IR, radio facilities

Riechers et al., 2013 Cooray et al., 2014

HFLS3

- Giant starburst galaxy, not strongly lensed (µ_{lens} = 2.2)
- SFR ~ 1300 M_{\odot} yr⁻¹ ~ 10 x Arp 220
- Tracing the peaks of SFR at early epochs

- ~ 500 high-z candidates (500-μm risers) found in 300 sq. deg of HerMES fields
 - More than predicted by galaxy evolution models
- Future follow-up of *Herschel* database with other facilities ALMA, HST, JWST, SPICA etc.

AGN-driven Outflow Suppressing Star-Formation?

Fischer et al., 2010; Sturm et al., 2011

AGN-driven Outflow Suppressing Star-Formation?

High-speed outflow:

- ~ 1000 km s⁻¹
- Too fast to be driven by supernovae
- Mass loss rate ~ 1000 M_{\odot} /yr
- Gas reservoir clearing time ~ 10⁷ yrs

Fischer et al., 2010; Sturm et al., 2011

AGN with High L_x not Detected by SPIRE

Rangwala et al., 2011

ARP 220

ARP 220

Rangwala et al., 2011

Andromeda

Andromeda

HELGA Consortium

M104

Polaris : Cirrus/Molecular Cloud

Rosette Nebula

Motte et al. (2012)

RCW 120: Triggered Star Formation

Accretion onto Filaments along Magnetic Field Lines

20 pc Taurus *Herschel* Gould Belt survey SPIRE 500µm

Kirk et al. 2013 Palmeirim et al., 2013 5 deg

A Universal Size Scale for Filaments?

Arzoumanian et al. 2011

Origin of Filament Size Scale?

- 0.1 pc ~ energy dissipation scale of turbulence in the ISM
- Global magnetic field of the cloud maintains filament structure on Myr timescales

Simulations by Hennebelle 2013

Aquila Nebula

Density Threshold for Core Formation

Könyves etal. in prep, André et al. 2013

Core Mass Function in Aquila

• Critical M_{line} for gravitational instability ~ 16 M_{\odot} pc⁻¹ for T ~ 10 K

- This $\equiv 160 \text{ M}_{\odot} \text{ pc}^{-2}$ with 0.1 pc filament width
- CMF peaks at ~ 0.6 M_☉
 ≈ mass for marginally stable filaments
- ⇒ pre-stellar cores form mainly via gravitational fragmentation of filaments

André et al. 2010 Könyves et al. 2010

High-Mass Star Formation

- Large-scale infall
- Merging of filaments into ridges and hubs to form clusters

Hennemann et al. 2012

Water in Protoplanetary Disk of TW Hydrae

Hogerheijde et al. (2011)

- Mass = 0.6 M_{\odot} Age ~ 10 Myr
- Thin layer of H₂O at ~ 100 K
- Balance between photo-evaporation and freeze-out
- Implies large reservoir of water ice

Dust in the Crab Nebula (Gomez et al., 2012)

- Herschel + IR-radio ancillary data
- Synchrotron component removed
- Dust located along filaments (protecting dust from shocks?)
- Two components
 - ~ 0.2 M_{\odot} of silicates; 28 K
 - ~ 0.1 M_{\odot} amorphous carbon; 34 K
- \Rightarrow formation of dust in core-collapse supernova ejecta

Dust in the SN1987A (*Herschel* and ALMA) (Matsuura et al., 2012; Indebetou et al. 2014)

Herschel HERITAGE

ALMA

Dust mass $0.5 - 0.8 M_{\odot}$

HIFI – Orion KL

Bergin et al. (2011)

Methanol and Other Molecules in Orion

Wang et al. 2011

- NH₂CHO
- SiS
- C₂H₅OH
- H₂CS
- NO
- NS
- SO, ³⁴SO, ³³SO, S¹⁸O
- SO₂, ³⁴SO₂, ³³SO₂
- HCN, H¹³CN, HC¹⁵N
- HNC, H¹⁵NC, HN¹³C
- SiO
- CH₃CN, ¹³CH₃CN, CH₃¹³CN
- NH₃, ¹⁵NH₃, NH₂D
- HCl, H³⁷Cl
- H₂S, H₂³³S, H₂³⁴S
- H₂CO, H₂¹³CO, HDCO

 HCOOCH₃ • CCH • CN • HC₃N • H₂O, HDO, HD¹⁸O, D₂O, H₂¹⁸O, $H_2^{17}O$ • CH₃OH, ¹³CH₃OH, CH₃OD, CH₂DOH C₂H₅CN HNCO, HN¹³CO • HCS⁺ • H₂CCO • OCS CH₃OCH₃ CS, C³⁴S, C³³S, ¹³CS CO, ¹³CO, C¹⁷O, C¹⁸O • HCO⁺

Herschel Discovers Water on Mars

... and in the Stratosphere of Jupiter

- PACS and HIFI spectroscopy
- No evidence of a satellite or ring source
- Vertcal distribution does not fit internal source
- Horizontal distributon and hemispheric asymmetry favour SL9 (1994) impact

Cavalie et al. 2013

... and around Dwarf Planet Ceres

Keuppers et al., 2014

Herschel Publication Rate

Number of Publications

Calendar Years Since Launch

HiRes Maps

M31 500 µm: Nominal

M31 500 µm: HiRes

HiRes Maps

M31 250 µm: Nominal

M31 500 µm: HiRes

SPIRE 500 μm Nominal resolution

SPIRE 500 μm HiRes

SPIRE 250 μm Nominal resolution

SPIRE 250 μm HiRes

