倾角函数及其导数的定积分计算方法*

吴连大¹ 汪宏波^{1,2†}

(1 中国科学院紫金山天文台 南京 210008)(2 中国科学院空间目标与碎片观测重点实验室 南京 210008)

摘要 给出了一种倾角函数及其导数的定积分计算方法,表达式十分简单,其计算精度:倾角函数可达 10^{-15} ,导数可达 10^{-13} ,可与 Gooding 方法相媲美. 该方法的稳定性和 适用倾角范围均较好,可供倾角函数的最高阶数 $L_{\text{max}} \leq 50$ 时使用.

关键词 天体力学,方法:数值 中图分类号: P133; 文献标识码: A

1 引言

倾角函数是地球引力场和日月摄动函数展开的重要工具,已经广泛应用于许多卫星 动力学研究的场合,倾角函数的定义为

$$\bar{P}_l^m(\sin\varphi_s)\exp\left(jmL\right) = \sum_{p=0}^l j^{l-m}\bar{F}_{lmp}(I)\exp\left(j(l-2p)u\right),\tag{1}$$

其中 φ_s 为卫星的纬度, I为卫星倾角, L为从升交点起量的经度, u为卫星的纬度角, $\bar{P}_l^m(\sin\varphi_s)$ 为正规化缔合 Legendre 多项式, $j = \sqrt{-1}$, $\bar{F}_{lmp}(I)$ 称为正规化倾角函数, l、m、p为倾角函数的 3 个指标. 现在常用其单重求和的展开式表达^[1]:

$$\bar{F}_{lmp}(I) = \frac{N_{lm}(l+m)!}{2^{l}p!(l-p)!} \sum_{j=\max(0,l-2p-m)}^{\min(m-l,2m-2p)} (-1)^{j} \times \begin{pmatrix} 2l-2p\\ j \end{pmatrix} \begin{pmatrix} 2p\\ l-m-j \end{pmatrix} s^{m+2j-l+2p} c^{3l-m-2j-2p},$$
(2)

其中

$$N_{lm} = \left[\frac{(l-m)!(2l+1)(2-\delta_{0,m})}{(l+m)!}\right]^{\frac{1}{2}}, \quad \delta_{0,m} = \begin{cases} 1 & m=0\\ 0 & m\neq 0 \end{cases}$$

2011-05-20 收到原稿, 2011-07-04 收到修改稿

*国家自然科学基金项目 (11033009,11003049) 资助

 † whb@pmo.ac.cn

$$\begin{pmatrix} 2l-2p\\ j \end{pmatrix} = \frac{(2l-2p)!}{(2l-2p-j)!j!}, \quad \begin{pmatrix} 2p\\ l-m-j \end{pmatrix} = \frac{(2p)!}{(2p-l+m+j)!(l-m-j)!}$$

由于 (2) 式是一个交叉级数,利用它来计算 $F_{lmp}(I)$,很容易损失精度,这就导致了 高阶倾角函数的计算困难,倾角函数有许多计算方法,如递推计算方法等 ^[2-4],Gooding 等 ^[5] 给出了倾角函数的高精度计算方法,能将倾角函数计算到数万阶,已被认为是目前 倾角函数的精度标准,但该方法耗时较多,大批量计算时使用不甚方便.

本文主要研究利用定积分计算倾角函数的方法.

2 方法概要

2.1 倾角函数的定积分计算

根据倾角函数的定义:

$$\bar{P}_{l}^{m}(\sin\varphi_{s})\exp(jmL) = \sum_{p=0}^{l} j^{l-m}\bar{F}_{lmp}(I)\exp(j(l-2p)u) \\
= \sum_{p=0}^{l} \bar{F}_{lmp}(I)\exp\left(j(l-2p)u + \frac{l-m}{2}\pi\right)$$
(3)

以及三角函数的正交性,即有

$$\bar{F}_{lmp}(I) = \frac{1}{2\pi} \int_{0}^{2\pi} \bar{P}_{l}^{m}(\sin\varphi) \exp j \left[mL - (l-2p)u - \frac{l-m}{2}\pi \right] du = \frac{1}{2\pi} \int_{0}^{2\pi} \bar{P}_{l}^{m}(\sin\varphi) \cos \left[mL - (l-2p)u - \frac{l-m}{2}\pi \right] du,$$
(4)

其中

$$\sin \varphi = \sin I \sin u$$

$$\cos \varphi \sin L = \cos I \sin u \quad . \tag{5}$$

$$\cos \varphi \cos L = \cos u$$

2.2 倾角函数的导数

(4) 式对倾角 I 求导, 即有

$$\frac{\mathrm{d}\bar{F}_{lmp}(I)}{\mathrm{d}I} = \frac{1}{2\pi} \int_0^{2\pi} \left\{ \bar{P}_l^{\prime m}(\sin\varphi) \frac{\mathrm{d}\varphi}{\mathrm{d}i} \cos\left[mL - (l-2p)u - \frac{l-m}{2}\pi\right] - m\bar{P}_l^m(\sin\varphi) \sin\left[mL - (l-2p)u - \frac{l-m}{2}\pi\right] \frac{\mathrm{d}L}{\mathrm{d}i} \right\} \mathrm{d}u \,, \tag{6}$$

利用

$$\begin{cases} \frac{\mathrm{d}\varphi}{\mathrm{d}I} = \sin L, \quad \frac{\mathrm{d}L}{\mathrm{d}I} = -\frac{\sin\varphi\cos L}{\cos\varphi} \\ \frac{\mathrm{d}\bar{P}_l^m(x)}{\mathrm{d}\varphi} = \sqrt{\frac{(2-\delta_{0,m})(l-m)(l+m+1)}{2}} \bar{P}_n^{m+1}(x) - \frac{m\sin\varphi}{\cos\varphi} \bar{P}_l^m(x) \end{cases},$$
(7)

即得倾角函数导数的表达式:

$$\frac{\mathrm{d}\bar{F}_{lmp}(I)}{\mathrm{d}I} = \frac{1}{2\pi} \int_0^{2\pi} \left\{ \sqrt{\frac{(2-\delta_{0,m})(l-m)(l+m+1)}{2}} \bar{P}_l^{m+1}(\sin\varphi) \times \sin L \cos \left[mL - (l-2p)u - \frac{l-m}{2} \pi \right] + \frac{m\sin\varphi}{\cos\varphi} \bar{P}_l^m(\sin\varphi) \sin \left[mL - (l-2p)u - \frac{l-m}{2} \pi \right] \right\} \mathrm{d}u \,.$$
(8)

如果用 (8) 式计算倾角函数的导数,将会出现 $\varphi = 90^{\circ}$ 的奇点,因此,必须引进

$$\bar{P}_l^m(\sin\varphi) = \bar{P}_l^{(m)}(\sin\varphi)\cos^m\varphi\,.$$

这样, (4) 式和 (8) 式就分别变为

$$\bar{F}_{lmp}(I) = \frac{1}{2\pi} \int_0^{2\pi} \bar{P}_l^m(\sin\varphi) \cos^m\varphi \cos x \mathrm{d}u\,, \qquad (9)$$

$$\frac{\mathrm{d}\bar{F}_{lmp}(I)}{\mathrm{d}I} = \begin{cases} \frac{1}{2\pi} \int_{0}^{2\pi} \sqrt{\frac{l(l+1)}{2}} \bar{P}_{l}^{(1)}(\sin\varphi) \cos\varphi \sin L \cos x \mathrm{d}u & m = 0\\ \frac{1}{2\pi} \int_{0}^{2\pi} \frac{1}{\sqrt{(l-m)(l+m+1)}} \bar{P}_{l}^{(m+1)}(\sin\varphi) \cos^{m+1}\varphi \sin L \cos x & ,\\ +m\sin\varphi \bar{P}_{l}^{m}(\sin\varphi) \cos^{m-1}\varphi \sin(x-L) \} \mathrm{d}u & m \neq 0 \end{cases}$$
(10)

其中

$$x = \cos\left[mL - (l - 2p)u - \frac{l - m}{2}\pi\right].$$
(11)

对于给定的 u 和倾角 I, L 和 φ 即可利用 (5) 式计算. 我们只要能精确计算正规化缔合 Legendre 多项式,计算 (9)~(10) 式的定积分,就可得到倾角函数及其导数.

以上就是倾角函数的定积分计算方法的基本思想,我们研究的是:本方法的可行性、 计算精度、适应的倾角范围和高阶倾角函数计算的稳定性.

3 正规化缔合 Legendre 多项式的计算

为了能用 (9)~(10) 式准确计算倾角函数,首先必须有准确计算正规化缔合 Legendre 多项式 $\bar{P}_l^m(\sin\varphi)$ 的方法.许多文献研究了 $\bar{P}_l^m(\sin\varphi)$ 的递推算法,认为下面的计算方法 是稳定的 ^[6].

$$\begin{cases} \bar{P}_{l}^{l}(x) = \sqrt{\frac{(2l+1)(2-\delta_{0,l})}{2l(2-\delta_{0,l-1})}} \bar{P}_{l-1}^{l-1}(x) \\ \bar{P}_{l}^{l-1}(x) = \sqrt{2l+1} x \bar{P}_{l-1}^{l-1}(x) \\ \bar{P}_{l}^{0}(x) = \frac{\sqrt{2l+1}}{l} [\sqrt{2l-1} x \bar{P}_{l-1}^{0}(x) - \frac{l-1}{\sqrt{2l-3}} \bar{P}_{l-2}^{0}(x)] \\ \bar{P}_{l}^{m}(x) = x \sqrt{\frac{(2l-1)(2l+1)}{(l+m)(l-m)}} \bar{P}_{l-1}^{m}(x) - \sqrt{\frac{(2l+1)(l+m-1)(l-m-1)}{(2l-3)(l+m)(l-m)}} \bar{P}_{l-2}^{m}(x) \end{cases}$$
(12)

递推初值为

$$\bar{P}_0^0(x) = 1, \quad \bar{P}_1^1(x) = \sqrt{3}, \quad \bar{P}_1^0(x) = \sqrt{3}x.$$
 (13)

4 数值求积公式的选择

为了保证积分计算的精度,我们选择积分精度最高的高斯积分公式,高斯积分方法 将定积分表达为

$$\int_{a}^{b} f(x) dx = \frac{nh}{2} \sum_{k=0}^{n} A_{k}^{(n)} f\left(a + \frac{nh}{2}(1+x_{k})\right), \quad h = \frac{n(b-a)}{N}, \quad (14)$$

其中 n 为高斯积分的阶数, N 为积分时计算被积函数的次数, N 必须是 n 的倍数. x_k 为高斯积分的节点, $A_k^{(n)}$ 为积分权重, $2\sim5$ 阶的积分系数表如表 1.

表 1 高斯积分系数

 Table 1
 Coefficients of Gaussian integrators

n	k	$x_k^{(n)}$	$1 + x_k^{(n)}$	$A_k^{(n)}$
2	1	0.577350269189626	1.577350269189626	1
2	2	-0.577350269189626	0.4226497308103742	1
3	1	0	1	8/9
3	2	0.774596669241483	1.774596669241483	5/9
3	3	-0.774596669241483	0.2254033307585166	5/9
4	1	0.861136311594053	1.861136311594053	0.3478548451374540
4	2	-0.861136311594053	0.1388636884059474	0.3478548451374540
4	3	0.339981043584856	1.339981043584856	0.6521451548625463
4	4	-0.339981043584856	0.6600189564151437	0.6521451548625463
5	1	0	1	128/225
5	2	0.906179845938664	1.906179845938664	0.2369268850561878
5	3	-0.906179845938664	0.09382015406133593	0.2369268850561878
5	4	0.538469310105683	1.538469310105683	0.4786286704993662
5	5	-0.538469310105683	0.4615306898943169	0.4786286704993662

将区间 [a, b] 分成 N/n 个小区间积分,每个小区间长 $\frac{n(b-a)}{N}$,于是整个区间积分就可表示为

$$\int_{a}^{b} f(x) dx = \frac{nh}{2} \sum_{i=0}^{N/n-1} \sum_{k=0}^{n-1} A_{k}^{(n)} f\left(a + \frac{nh}{2}(1 + x_{k} + 2i)\right).$$
(15)

对于 n = 2, 有

$$\int_{a}^{b} f(x) dx = h \sum_{i=0}^{N/2-1} \left[f\left(a + h\left(1 + \frac{1}{\sqrt{3}} + 2i\right)\right) \right].$$
 (16)

由于 (9)~(10) 式的被积函数是高频振荡的,如果按 (11) 式的 x 频率来估计,其最小 周期为 $\frac{2\pi}{2L_{\text{max}}}$,其中 L_{max} 为我们需要计算的倾角函数的最高阶数.

因此,为了保证倾角函数的精度,按一个周期内起码计算 2 个被积函数来估计,则 $N \ge 4L_{\text{max}}$. 当然,我们可以希望通过增大 n 来减少被积函数的计算次数 N,我们试算 了 n = 2,3,4 这 3 种情况,发现 n = 3,4 时,计算精度是提高了,但 N 仍需保证足够的 数量,因此,在下面的计算 $L_{\text{max}} = 180$ 中,我们选择:

$$n = 2, \quad N = 4L_{\max} = 4 \times (180 + 10) = 760.$$
 (17)

对于给定的倾角 *I*, 首先给定 $L_{\text{max}} = 180$, 在计算被积函数的程序中, 对于给定的 *u*, 利用 (12)~(13) 式递推计算出所有的 Legendre 多项式 $\bar{P}_l^{(m)}(\sin \varphi)$ ($l = 0, ...L_{\text{max}}; m = 0, ...l$), 从而利用 (9)~(10) 式, 计算出所有求解 $\bar{F}_{lmp}(I)$ 和 $\frac{d\bar{F}_{lmp}(I)}{dI}$ ($l = 0, ...L_{\text{max}}; m = 0, ..., l$; p = 0, ..., l) 所必须的被积函数, 利用 2 阶高斯积分公式 (n = 2, N = 760) 进行积分, 高斯积 分程序设计为对 4 维数组的积分.

5 算例

Gooding 等人在 2008 年给出了他们研究的倾角函数计算方法^[5],并提供了 Fortran 代码.本文以此为参照,验证本文方法的正确性和有效性.为叙述简便,下文称 Gooding 等人的方法为 Gooding 方法,称本文研究的定积分为本文方法.

5.1 算例1

本算例取自文献 [4], 倾角 $I = 109.9^{\circ}$, m = 15, p = (l - 1)/2. 表 2 中第 5 列为分析公式的计算结果,是我们重新计算的,比文献 [4] 的结果稍好一些,但这组结果显然较差,说明交叉级数严重损失精度.

5.2 算例 2

本算例取自文献 [5], 倾角 $I = 25^{\circ}$, 表 3 给出了 m = 15, p = (l - 1)/2 的计算结果, 包括 Kostelesky 方法、 Gooding 方法和本文方法.

表 2 倾角函数计算结果比对

 Table 2
 Comparison of calculated results of inclination function

l	Gooding's	The paper's	Difference	Original formulation
15	0.163727788669698	0.163727788669698	0.000000000000001	0.1637277887
17	0.487417791777481	0.487417791777480	0.00000000000000000000000000000000000	0.4874177918
19	0.039444885080361	0.039444885080361	0.00000000000000000000000000000000000	0.0394448851
21	-0.334234993689438	-0.334234993689439	0.00000000000000000000000000000000000	-0.3342349937
23	0.238101170358486	0.238101170358485	0.000000000000001	0.2381011704
25	0.035197122324998	0.035197122324998	0.00000000000000000000000000000000000	0.0351971223
27	-0.238961053270882	-0.238961053270883	0.00000000000000000000000000000000000	-0.2389610533
29	0.250820102027528	0.250820102027528	0.0000000000000000	0.2508201020
31	-0.098284229213865	-0.098284229213866	0.000000000000001	-0.0982842292
33	-0.099812590952652	-0.099812590952652	0.0000000000000000	-0.0998125912
35	0.220401483107786	0.220401483107785	0.0000000000000000	0.2204014781
37	-0.203459255803049	-0.203459255803050	0.000000000000001	-0.2034592797
39	0.072853902584608	0.072853902584608	0.0000000000000000	0.0728540686
41	0.089117362850045	0.089117362850044	0.000000000000001	0.0891178996
43	-0.192487848426302	-0.192487848426302	0.0000000000000000	-0.1924876311
45	0.186917527873700	0.186917527873700	0.00000000000000000000000000000000000	0.1869099842
47	-0.083106948025162	-0.083106948025162	0.0000000000000000	-0.0831112377
49	-0.058636531371390	-0.058636531371390	0.0000000000000000	-0.0589966579
51	0.163214940273027	0.163214940273027	0.0000000000000001	0.1624378367

with different methods

Table 2 (continued)						
l	Gooding's	The paper's	Difference	Original formulation		
53	-0.179533365185972	-0.179533365185973	0.000000000000001	-0.1817484772		
55	0.104101730627469	0.104101730627469	0.00000000000000000000000000000000000	0.0930503545		
57	0.020582796611666	0.020582796611665	0.000000000000001	-0.0645316645		
59	-0.129982540091162	-0.129982540091161	-0.000000000000001	-0.1399403611		
61	0.170531791536338	0.170531791536337	0.000000000000001	-0.9145552167		
63	-0.125189906580770	-0.125189906580770	0.00000000000000000000000000000000000	-4.5011061275		
65	0.019772145452192	0.019772145452193	-0.000000000000001	-9.8822915551		
67	0.091764653339848	0.091764653339848	0.00000000000000000000000000000000000	-65.3101154737		

表 2 续

表 3 倾角函数计算结果比对表

Table 3 Comparison of calculated results of inclination function

with different methods

l	Gooding's	The paper's	Difference	Kostelecky
15	0.000006495963948	0.000006495963948	0.0000000000000000	0.000006496
17	0.000103011627958	0.000103011627958	0.0000000000000000	0.000103012
19	0.000697212946079	0.000697212946079	0.0000000000000000	0.000697213
21	0.003095855769518	0.003095855769517	0.000000000000001	0.003095856
23	0.010362283211892	0.010362283211892	0.000000000000001	0.010362283
25	0.027982715562962	0.027982715562961	0.000000000000001	0.027982716
27	0.063368623022614	0.063368623022613	0.000000000000001	0.063368623
29	0.123165875914705	0.123165875914704	0.0000000000000000	0.123165876
31	0.208228139242237	0.208228139242237	0.0000000000000000	0.208228139
33	0.307934792933924	0.307934792933923	0.000000000000001	0.307934793
35	0.397399393922436	0.397399393922434	0.000000000000001	0.397399394
59	0.242896738083475	0.242896738083474	0.000000000000001	0.242896738
61	0.083439810887535	0.083439810887536	-0.000000000000001	0.083493811
63	-0.114258980696525	-0.114258980696525	0.0000000000000000	-0.114258981
65	-0.243634951510728	-0.243634951510727	-0.000000000000001	-0.243634952
67	-0.234916254335388	-0.234916254335387	-0.000000000000001	-0.234916254
69	-0.095167486129861	-0.095167486129861	0.0000000000000000	-0.095167486
71	0.094299649996282	0.094299649996281	0.000000000000001	0.094299650
73	0.223783197359335	0.223783197359335	-0.000000000000001	0.223783197
109	-0.039188873349748	-0.039188873349748	0.0000000000000000	-0.039188873
111	-0.164084175158719	-0.164084175158719	0.0000000000000000	-0.164084175
113	-0.178975254642246	-0.178975254642245	-0.000000000000002	-0.178975255
115	-0.075767107928238	-0.075767107928236	-0.000000000000002	-0.075767108
117	0.075634719665441	0.075634719665440	0.0000000000000000	0.075634720
119	0.174336031849824	0.174336031849824	0.0000000000000000	0.174336032
171	-0.149468016969461	-0.149468016969461	0.000000000000001	-0.149468017
173	-0.113255563109117	-0.113255563109115	-0.000000000000002	-0.113255563
175	0.000590395612723	0.000590395612724	0.0000000000000000	0.000590396

从表 2 和表 3 可见,对于倾角函数的计算结果,本文方法与 Gooding 差别约为 10⁻¹⁵. 而我们在文献 [7] 中研究的递推方法与 Gooding 方法差别约为 10⁻¹². Kostelecky 方法 ^[5] 的结果本身只给出了小数点后 9 位有效位数,无法用于衡量更高精度,仅作正确性判断.

通过以上比较,我们不难得出结论: (9)~(10) 式定积分计算倾角函数的误差,基本 与计算机双精度运算的误差相同,计算精度是能保证的. 当然,不同的 *L*_{max},必须选择 适当的 *N*,我们只计算了 *L*_{max} ≤ 180 的情况,但是对于卫星动力学的当前研究来说,这 已经够用了.

表 4 给出了倾角函数一阶导数的计算结果 ($I = 25^{\circ}$, m = 15, p = (l - 1)/2), 比较可见, 定积分计算倾角函数导数的精度也可达到 10^{-13} , 也已经足够了.

表 4 倾角函数一阶导数计算结果比对表

 Table 4 Comparison of calculated results of firstorder derivatives of inclination

 function with different methods

l	Gooding's	The paper's	Difference		
15	0.000193588834461	0.000193588834461	0.00000000000000000000000000000000000		
17	0.002962643282053	0.002962643282054	-0.000000000000001		
19	0.019210738800719	0.019210738800720	-0.000000000000001		
21	0.080996204022307	0.080996204022303	0.000000000000004		
23	0.254529309868877	0.254529309868872	0.000000000000005		
25	0.635791817300206	0.635791817300204	0.00000000000002		
27	1.304718954007593	1.304718954007594	-0.000000000000002		
29	2.229338572015512	2.229338572015515	-0.00000000000003		
31	3.154511340102659	3.154511340102648	0.00000000000011		
33	3.561310705132132	3.561310705132130	0.000000000000001		
35	2.797301141098675	2.797301141098648	0.00000000000027		
59	-7.135563481217891	-7.135563481217909	0.00000000000019		
61	-13.533758345144610	-13.533758345144580	-0.00000000000032		
63	-12.842455780020720	-12.842455780020680	-0.000000000000041		
65	-4.896633828451622	-4.896633828451554	-0.00000000000068		
67	6.247154772263426	6.247154772263390	0.00000000000036		
69	14.285109814165770	14.285109814165700	0.00000000000073		
71	14.262965486747120	14.262965486747080	0.00000000000044		
73	5.729761501008049	5.729761501008043	0.000000000000006		
109	-19.534576265607050	-19.534576265607070	0.00000000000014		
111	-9.973302918500933	-9.973302918500870	-0.000000000000062		
113	6.465575798302253	6.465575798302296	-0.00000000000043		
115	18.903633919489430	18.903633919489100	0.00000000000334		
117	18.874890323982490	18.874890323982200	0.000000000000291		
119	6.119038949987942	6.119038949987788	0.00000000000155		
171	-3.447813907690885	-3.447813907690867	-0.000000000000019		
173	16.897485750371600	16.897485750371400	0.000000000000210		
175	25.708239113919340	25.708239113919130	0.000000000000206		

57

6.1 对各种倾角的适应性

在以上算例中,我们只比较了 2 个不同的倾角,而且,对于每个倾角的 l、m和p的数值是固定的,即只比较了一个倾角函数,比较的样本很小,因此,我们选择了 5 种倾角 $I = 0^{\circ}, 30^{\circ}, 60^{\circ}, 90^{\circ}, 120^{\circ}, 对于 <math>l = 50, 60, ...180,$ 对所有的 m和p进行了比较,比较仍以 Gooding 方法为标准,表 5 列出了与 Gooding 方法的最大互差的数值,互差大于 10^{-14} 的项数,我们称之为超差项数.由表可见:超差项数极大值出现在 $I = 90^{\circ}$ 附近, 超差比例不到 2%,与 Gooding 方法最大互差的数值出现在 $I = 0^{\circ}$ 附近.但是,这样的结果是可以接受的.因此可以认为:倾角函数的定积分计算方法,可以适用于任何倾角,没有计算奇点.

表 5 几种倾角的统计比较

 Table 5
 Comparison between our calculated results with Gooding's results

 for several inclinations

I	l	Number of terms	Maximum difference	Ι	l	Number of terms	Maximum difference
	50	20	0.54178×10^{-13}		0	50	$0.59501{\times}10^{-14}$
	60	18	-0.73718×10^{-13}		0	60	$0.71054{\times}10^{-14}$
	70	28	-0.70832×10^{-13}		0	70	-0.59396×10^{-14}
	80	38	0.10658×10^{-14}		1	80	-0.10436×10^{-13}
	90	45	-0.19295×10^{-14}		2	90	-0.12189×10^{-13}
	100	47	0.12989×10^{-14}		1	100	-0.10214×10^{-13}
0°	110	57	$0.12434{\times}10^{-14}$	30°	110	3	-0.12434×10^{-13}
	120	65	$0.20317{\times}10^{-14}$		120	5	-0.11546×10^{-13}
	130	93	-0.15387×10^{-14}		130	19	$0.15353{\times}10^{-13}$
	140	112	-0.21316×10^{-14}		140	12	$0.14654{\times}10^{-13}$
	150	117	-0.24447×10^{-14}		150	14	0.14144×10^{-13}
	160	146	0.21715×10^{-14}		160	56	0.14876×10^{-13}
	170	196	0.31863×10^{-14}		170	107	0.18762×10^{-13}
	180	241	-0.25379×10^{-14}		180	146	-0.20844×10^{-13}
	50	0	-0.56066×10^{-14}		50	0	$\text{-}0.55511{\times}10^{-14}$
	60	0	-0.48849×10^{-14}	90°	60	0	-0.67723×10^{-14}
	70	0	-0.62172×10^{-14}		70	0	-0.72997×10^{-14}
	80	0	$0.61111{\times}10^{-14}$		80	1	$0.10075{\times}10^{-13}$
	90	0	$0.69666{\times}10^{-14}$		90	17	$0.12656{\times}10^{-13}$
	100	1	0.10075×10^{-13}		100	39	$0.13211{\times}10^{-13}$
60°	110	0	-0.89789×10^{-14}		110	65	-0.16292×10^{-13}
	120	1	-0.10395×10^{-13}		120	107	$0.16292{\times}10^{-13}$
	130	12	-0.14835×10^{-13}		130	171	$0.27838{\times}10^{-13}$
	140	3	-0.12878×10^{-13}		140	177	-0.20650×10^{-13}
	150	4	-0.11136×10^{-13}		150	246	-0.21302×10^{-13}
	160	10	0.13100×10^{-13}		160	361	-0.25868×10^{-13}
	170	24	-0.14706×10^{-13}		170	454	0.30753×10^{-13}
	180	55	0.15676×10^{-13}		180	559	-0.35915×10^{-13}

Table 5 (continued)				
Ι	l	Number of terms	Maximum difference	$I \ l$ Number of terms Maximum difference
	50	0	0.49960×10^{-14}	
	60	0	$0.73274{ imes}10^{-14}$	
	70	0	$0.52458{\times}10^{-14}$	
	80	0	$0.86597{\times}10^{-14}$	
	90	0	$0.87152{\times}10^{-14}$	
	100	0	0.91038×10^{-14}	
120°	110	2	0.15321×10^{-13}	
	120	1	0.11518×10^{-13}	
	130	11	0.13544×10^{-13}	
	140	6	0.13544×10^{-13}	
	150	8	0.11587×10^{-13}	
	160	11	0.15099×10^{-13}	
	170	34	0.18263×10^{-13}	
	180	56	0.17763×10^{-13}	

表5 续

. . 1

6.2 R.D 分析

在评价倾角函数方法时,经常使用相对亏损 R.D (relative deficit) 来评价,这里相对 亏损 R.D 的定义为^[5]

$$R.D = 1 - \frac{\sum_{m=0}^{l} \sum_{p=0}^{l} F_{lmp}^{2}(I)}{2l+1}.$$
(18)

本文方法和 Gooding 方法的 R.D 比较如图 1.

7 结论与讨论

通过以上对定积分计算倾角函数方法的分析,我们可以得出如下结论:

- (1) 本文给出了一种定积分计算倾角函数及其导数的方法;
- (2) 该方法的计算精度较高,已基本与 Gooding 方法相当;
- (3) 该方法的稳定性和使用倾角范围均较好.

但是倾角函数的定积分计算方法,也有明显的缺点:计算时间较长,但仍可在 L_{max} ≤ 50 时实际应用, 计算一批倾角函数的计算机时间小于1s. 如何设计定积分方法或改变被 积函数的算法,以提高计算速度,增大适用范围,有待今后进一步研究.

从图 1 可见, 定积分计算方法的 R.D 没有随 *l* 的增加发散, 其中, $I = 120^{\circ}$ 的 R.D 比 Gooding 方法的 R.D 还要小一些,因此,我们可以说: 倾角函数的定积分计算方法是 稳定的,起码不比 Gooding 方法差.

图 1 R.D 的比较图 Fig.1 Comparison of R.D.

参考文献

- [1] Gaposchkin E M, Latimer J, Veis G. SAOSR, 1973, 353: 309
- $[2] \quad {\rm Gooding \ R \ H. \ CeMec, \ 1971, \ 4: \ 91}$
- [3] Kostelesky J. BAICz, 1985, 36: 242
- [4] Wnuk E, Wytrzyszczak I. CeMec, 1988, 42: 251
- [5] $\,$ Gooding R H, Wagner C A. CeMDA, 2008, 101: 247 $\,$
- [6] Fantino E, Casotto S. JGeod, 2009, 83: 595
- [7] 吴连大, 汪宏波. 中国科学 G 辑, 2011, 41: 10

A Definite Integration Method of Calculating Inclination Function and its Derivative

WU Lian-da¹ WANG Hong-bo^{1,2}

 (1 Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing 210008)
 (2 Key Laboratory of Space Object and Debris Observation, Chinese Academy of Sciences, Nanjing 210008)

ABSTRACT The paper gives a definite integration method of calculating inclination function and its derivative. The expression is simple, but its accuracy is very well. It is about 10^{-15} and 10^{-13} for inclination function and its derivative, respectively. This level is comparable to the accuracy of Gooding's method. Through a lot of numerical simulations, it is proved that the method has good stability and wide-scope application of inclination. It takes very little time to calculate low-order function (less than 50), so the method can be directly used in calculating terrestrial and sun-moon gravitational perturbation.

Key words celestial mechanics, methods: numerical