doi: 10.15940/j.cnki.0001-5245.2017.05.006

平均中子辐照量计算公式 对CEMP-s和CEMP-r/s星的应用*

张凤华^{1,2†} 张 璐³ 崔文元² 张 波²

(1 沧州师范学院物理与信息工程学院 沧州 061001)
(2 河北师范大学物理科学与信息工程学院 石家庄 050024)
(3 河北师范大学数学与信息科学学院 石家庄 050024)

摘要 最近的研究结果表明,目前流行的¹³C壳层(¹³C pocket)在热脉冲间隔期间 辐射燃烧的低质量AGB (Asymptotic Giant Branch)星s-过程核合成模型,其核合成 区域的中子辐照量分布可视为指数形式,平均中子辐照量 τ_0 和模型参量之间的关系 为 $\tau_0 = -\Delta \tau / \ln[q/(1-r+q)]$,式中 $\Delta \tau$ 为每次照射的中子辐照量,r为重叠因子,q为¹³C壳 层占氦中间壳层的质量比例.利用文献中参数化AGB星s-过程核合成模型对20颗CEMP (Carbon-Enhanced Metal-Poor)-s和CEMP-s/r星观测丰度的拟合结果,对该平均中子 辐照量计算公式的可靠性进行了检验,并初步探讨其在重元素s-过程核合成理论研 究中的作用.研究结果表明:在辐射s-过程核合成机制下,对于经历连续多次中子照 射的CEMP星,公式是适用的;和参数化AGB星s-过程核合成模型结合,公式可以作为 单辐照或特殊CEMP星的一个有效筛选工具.考虑到¹³C壳层的不确定性,公式在理 解CEMP星中子俘获元素观测丰度产生的物理条件方面的作用值得做进一步的探讨.

关键词 恒星:AGB和后AGB, 核反应, 核合成, 丰度, 方法: 解析 中图分类号: P144; 文献标识码: A

1 引言

重元素(原子质量数A > 60)主要经铁族元素俘获中子产生^[1]. 中子俘获有两种 不同的、彼此独立的过程: 慢中子俘获过程(s-过程)和快中子俘获过程(r-过程). s-过 程要求较低的中子数密度条件($N_n < 10^8 \text{ cm}^{-3}$),使得任何不稳定的核都在俘获下一 个中子前先进行衰变, s-过程路径沿 β 稳定谷. s-过程主要发生在恒星氦燃烧阶段. 在 这个阶段可以产生两个中子源: 一个是¹³C中子源,通过¹³C(α ,n)¹⁶O反应释放中子; 另 一个是²²Ne中子源,通过²²Ne(α ,n)²⁵Mg释放中子^[2]. r-过程要求较高的中子数密度条 件($N_n \simeq 10^{22} \text{ cm}^{-3}$),主要发生在爆炸的天体物理环境中,如超新星爆发、中子星并合 等能够产生大量中子的环境.

²⁰¹⁷⁻⁰³⁻¹⁰收到原稿, 2017-04-01收到修改稿

^{*}国家自然科学基金项目(11673007、11643007),河北省自然科学基金项目(A2014110008)资助 [†]zfh1968zfh@163.com

s-过程核合成理论的研究主要有两种途径. 一是经典s-过程模型, 是一种纯唯象的方法. 延续B²FH^[1]的思想, Clayton等^[3–4]、Seeger等^[5]给出了s-核素丰度随时间变化的微分方程组并指出: 若定义中子流 N_nv_T (N_n 为中子数密度, v_T 为中子的热运动速率)对时间的积分 $\tau = \int N_nv_T dt$, τ 称为中子辐照量, 并令 $\rho_{\odot}(\tau) d\tau$ 表示太阳系中子辐照量在 $\tau - \tau + d\tau$ 之间的铁种子核数目比例, $\rho(\tau)$ 称为中子辐照量分布(Distribution of Neutron Exposure, 以下简称DNE), 则当 $\rho_{\odot}(\tau)$ 取指数形式

$$\rho_{\odot}(\tau) = f N_{\odot}^{56} / \tau_0 \exp(-\tau / \tau_0) \tag{1}$$

时,所得结果可以拟合太阳系的s-核素丰度分布,式中 N_{\odot}^{56} 为太阳系中种子核⁵⁶Fe的 丰度,因子f为被中子照射过的⁵⁶Fe核的比例,常数 τ_0 称为平均中子辐照量.逐渐地, 人们发现:要详细地解释全部的太阳系s-核素丰度分布至少需要3个不同的DNE,即 弱分量(负责生产原子质量数A < 88的s-核素)、主要分量(生产88 $\leq A \leq 208$ 的s-核素)和强分量(生产约50%的²⁰⁸Pb)^[6].利用经典模型拟合的太阳系s-元素主要分量 的 $\tau_0 = (0.296 \pm 0.003)(kT/30)^{1/2}$ mbarn^{-1[7]},式中kT为以keV为单位的分子热运动能 量.经典s-过程模型可确定s-过程的平均物理条件,如中子辐照量、中子数密度、温度以 及s-过程时标等^[6].

s-过程核合成理论研究的另一个有效途径是进行与热脉冲AGB (Asymptotic Giant Branch)阶段的恒星模型耦合的核合成数值计算.由于该方法能直接与天文观测相联系, 所以比经典模型具有明显的优势.迄今为止,AGB星s-过程核合成模型的发展演化主要 经历了3个阶段.20世纪70年代初,Ulrich^[8]根据热脉冲AGB模型,提出了一个部分重叠 的对流热脉冲循环s-过程核合成机制,其结果表明,无论什么样的中子源,该模型都可以 在其核合成区域自然地产生一个指数形式的渐近DNE,即氦中间壳层(氢燃烧壳层和氦 燃烧壳层之间的区域)内经历中子辐照量τ的物质比例为:

$$\rho_{\text{AGB}}(\tau) = C/\tau_0 \exp(-\tau/\tau_0), \qquad (2)$$

其中C为常数,平均中子辐照量70与恒星模型特征参量间存在关系

$$\tau_0 = -\frac{\Delta \tau}{\ln r} \,, \tag{3}$$

其中r为连续经历两次热脉冲的物质占氦中间壳层的质量比例,称为重叠因子, Δr为每次照射的中子辐照量.上述结果为经典模型太阳系DNE指数形式的唯象选择提供了天体物理依据.由于经典模型完全不依赖于恒星模型,通过(3)式,经典模型能够为恒星模型的核合成数值计算提供指导和约束^[6].

20世纪后20年的研究表明, $M \leq 3 M_{\odot}$ 的低质量AGB星是星系s-过程主要分量和强 分量同位素的主要生产场所, 而¹³C(α , n)¹⁶O是主要中子源^[9–10]. 第一个以¹³C为主要中 子源的低质量AGB星s-过程模型是¹³C壳层在热脉冲对流条件下燃烧释放中子的核合成 模型(C¹³ Pocket Convective Burning Model, 以下简称为CPCB模型)^[11–13]. 其基础假 设是:在每个热脉冲过去之后, 氦中间壳层顶部会形成一个¹³C密度随深度下降的¹³C壳 层, 该壳层保持不变, 直到下一个热脉冲发生, ¹³C壳层在对流的情况下被吞并、燃烧, 产生中子, 种子核俘获中子形成新核素. 当氦壳层对流至最充分时, 底部的温度升高到 约3×10⁸ K, ²²Ne源刚能被激发,释放出中子数密度峰值较大的少量中子,种子核继续 俘获中子合成新核素.这些产物最终在第3次挖掘中被混合到大气包层.该模型虽然包含 两个中子源,但仍在核合成区域给出满足(3)式的指数DNE.利用该模型,人们首次在单 颗AGB星内复制出太阳系的主要s-过程分量,并表明太阳系的核素丰度是在长期的星系 演化过程中不同质量、不同年龄的许多代恒星s-过程核合成的平均结果.该模型在探究 产生恒星观测丰度的物理条件方面取得很大进展^[9].而通过(3)式,平均中子辐照量₇₀成

为CPCB模型核合成计算的一个特征参数.

尽管如此, ¹³C在对流的脉冲里燃烧的思想也显现出一些缺点. 一般来说, 它提供的中子数密度 N_n 的范围为(4 – 10) × 10⁸ cm⁻³, 高于先前的期望值. 而且¹³C燃烧还有可能产生额外的能量, 改变某个方向上的脉冲结构, 使这个方向上的中子数密度 N_n 增加到与s-过程的要求不相符的值.

直到20世纪90年代中期,由于认识到¹³C壳层燃烧释放中子实际上是发生在辐射平 衡状态下的热脉冲间隔阶段,Straniero等^[14–15]、Gallino等^[16]的工作使AGB星的演化和 核合成研究前进了一大步.根据这种低质量AGB星辐射s-过程核合成模型(¹³C Pocket Radiative Burning Model,以下简称为CPRB模型),可以将AGB星内的核合成归结为以 下几个阶段: 1. 热脉冲熄灭后,少量的质子进入冷却的氦中间壳层的顶部; 2. 氢重新燃 烧时形成一个¹³C壳层; 3. 当这个区域随即被压缩且加热到(0.8 – 0.9) × 10⁸ K的温度范 围内时, ¹³C(α , n)¹⁶O反应释放中子,中子数密度 $N_n \leq 10^7$ cm⁻³,该区的新鲜Fe种子核 及已经历过先前的s-过程的物质在辐射条件下通过s-过程捕获中子,合成重元素; 4. 经 历了s-过程的壳层被对流的热脉冲吞没,并在此处同来自氢壳层下面的氢燃烧灰(含新鲜 的Fe种子核和¹⁴N)及来自先前各脉冲并因而经历过s-过程的物质混合; 5. 脉冲里的混合 物接受来自²²Ne源的中子照射,其中子数密度峰值高($N_n \leq 10^{10}$ cm⁻³)但中子辐照量小; 6. 热脉冲熄灭后,发生第3次挖掘,部分经历过s-过程且富¹²C的物质被混入包层; 7. 重 复上面的循环直到热脉冲阶段结束.由于是¹³C壳层的反应产物被对流的脉冲吞下,这 避免了¹³C(α , n)¹⁶O反应释放的能量引起结构上变化的危险.

多年来,人们根据CPRB模型,进行了大量的s-过程核合成计算^[7,10,16-21].由于¹³C壳层形成的具体物理机制还不清楚,因此在核合成计算中,¹³C壳层是根据观测约束人为引入的.计算结果表明,对于给定的¹³C壳层,s-过程的效率强烈依赖于金属丰度.利用该模型可以在单颗AGB星中更加成功地拟合出太阳系主要s-过程分量,并再次证实太阳系的核素丰度分布确实是星系演化的平均结果.利用该模型,采取不同的效率、金属丰度、初始质量和初始r-过程增丰,可以对s-过程核素增丰的恒星观测丰度给予合理的解释.通过这个模型,人们还预言s-过程弱分量的产生场所可能是大质量恒星,而s-过程强分量将导致恒星上Pb的丰度高出其他所有重核素的丰度,即预言了星系早期Pb星的存在,该预言已经被后来的观测证实.

尽管如此, 该模型仍然存在很多待解决的问题. 例如, ¹³C壳层形成的具体物理机 制及其结构对核合成结果的影响还需要进一步的探讨^[22-24]. 而就该模型核合成区域 的DNE而言, 也存在令人疑惑的问题. 模型的构建者们曾指出^[14,16], 同以前的Ulrich模型 以及¹³C壳层对流燃烧的核合成模型不同, ¹³C壳层在脉冲间隔期间的辐射平衡条件下燃 烧释放中子并引发核合成的s-过程机制, 使得模型的DNE变得非常复杂, 很难再做解析 表述. 在假设模型参量不随脉冲数变化的条件下, Gallino等^[16]和Cristallo^[25]先后给出了

实质上很相似的CPRB模型DNE的函数表达式. Gallino等^[16]并据此得出结论: CPRB模型的DNE更接近于几个单辐照的迭加而不是指数分布,恒星模型发展至此,和经典模型不再一致,经典模型似乎失去作用,平均中子辐照量概念不再有意义. 该结论先后被许多 文献引用^[7,9-10,25-26].

然而,原则上讲相似的s-过程元素丰度分布应该对应相似的DNE.实际上,CPRB模型不但与经典模型以及CPCB模型一样都能拟合出太阳系的主要s-过程分量丰度分布,而且Straniero等^[14]也曾经指出,与以前的CPCB模型相比,CPRB模型可以使s-过程核合成产量更早地达到渐近分布,而除此之外,两种模型导致的s-过程分布的差异极小.当满足下列条件时,两种模型非常相似的s-过程分布是可以预期的:1.释放的总的中子数目(因此τ₀)不变;2.激发中子源的脉冲底部温度保持相同;3.只有中子数密度峰值不同,但差异不超过几个数量级.由此可以看出,CPRB的DNE分布无论多么复杂,实质上不应偏离指数分布太远.因此,文献[16]的结论是非常值得质疑的.

由于¹³C壳层形成的具体物理机制还不清楚,在核合成计算中¹³C壳层是根据观测约 束通过自由参数化方法确定的^[7,16,24].而寻找CPRB模型与经典模型的关系,可以充分 发挥经典模型对¹³C壳层参量取值的约束作用.因此,经典s-过程模型和CPRB模型是否 一致的问题,不仅是一个重要的理论问题,也是一个具有重要应用价值的研究课题.近年 来,我们对CPRB模型的DNE进行了比较系统和深入的研究^[27-33].结果表明,CPRB模 型的DNE虽然不再是严格的指数分布,但在中子辐照量的有效值范围内^[27-31],仍可视 为指数分布.若同Gallino等^[16]以及Cristallo^[25]一样,不考虑模型参量随脉冲数的变化, 则该模型平均中子辐照量_{τ0}的解析表达式为^[32-33]:

$$\tau_0 = -\frac{\Delta \tau}{\ln[q/(1-r+q)]},\tag{4}$$

其中, q为¹³C壳层占氦中间壳层的质量比例.显然, (4)式再一次将经典模型和恒星模型 联系起来,充分表明了两种模型的一致性.利用此式,可以有效探讨不同初始质量和 金属丰度下CPRB模型DNE的特点以及恒星中子俘获元素观测丰度产生的物理条件. 然而,在将(4)式进行广泛的应用之前,对其可靠性进行充分的检验是非常必要的.文 献[32-33]将该公式应用到太阳系,初步证实了(4)式的可靠性.本文将该式应用到s-过程 元素超丰的贫金属星,进一步检验其可靠性,在此基础上,初步探讨该式在重元素s-过程 核合成理论研究中的作用.

2 样品星的选择

到目前为止已经探测到很多贫金属星([Fe/H] ≤ -1.0),其中[Fe/H] ≤ -2.0 的极贫金 属星中有至少9% – 25% (比率随金属丰度降低而增大)是碳超丰([C/Fe] > 1.0)的^[34–35], 称为CEMP (Carbon-Enhanced Metal-Poor)星. CEMP星通常是s-过程核素超丰的星, 它们具有较长的寿命和较低的初始质量($M \leq 0.9 M_{\odot}$),仍处于远离发生s-过程的AGB的 主序星、亚巨星或巨星演化阶段.因此,在这些星上观测到的s-过程核素超丰通常认 为来自对双星内较大AGB伴星(现已演化为白矮星)的富s-过程物质的质量吸积.这 些s-过程超丰的CEMP星中又有一半是r-过程核素也超丰的^[10,20].按照Beers等^[36]的分 类,把只有s-过程核素超丰的CEMP星称为CEMP-s星,把s-过程和r-过程核素均超丰的CEMP星称为CEMP-r/s星.由于s-核素超丰的CEMP星形成于星系早期,因此,研究其元素核合成及其丰度分布,对于检验元素的核合成理论和探索星系形成早期的化学演化具有重要意义.

Bisterzo等^[20]利用初始质量为1.3-2 M_☉的CPRB模型,解释了94颗CEMP-s和 CEMP-r/s星的中子俘获元素观测丰度分布,并给出这些观测星伴星的典型质量 为1.5 M_☉.如前所述,(4)式是对CPRB模型的DNE进行指数拟合得到的.为验证该式, 需要分别来自指数DNE核合成模型和CPRB模型对恒星观测丰度的拟合结果.需要特别 强调的是,由于CPCB模型也是指数DNE,因此,来自经典模型和CPCB模型的结果都可 以作为指数DNE核合成模型的结果来验证(4)式.为了保证检验结果的可信度,采用文献 中发表的拟合数据.综合考虑以上因素,我们选择上述94颗星中分别被文献[37]和[38]利 用参数化AGB星s-过程模型研究过的20颗星作为样品星,如表1第1列所示,表1第2列和 第3列分别给出了各恒星的类别和金属丰度.按照文献[37],这些星都具有以下4种元 素的丰度检测,即Sr (或Y,第1个s-过程峰)、Ba (第2个s-峰)、Eu (r-过程核素)以及Pb (第3个s-峰).按照文献[38],这些星中有6颗是铅星(表1第2列以括号"Pb"标注).

表 1 来自文献的拟合参数及根据(4)式的计算结果 Table 1 The fitted nucleosynthesis parameters from the published literature and the

calculated results according to the Eq.(4)									
class	$[\mathrm{Fe}/\mathrm{H}]$	$\Delta \tau^{\rm e}$	r^{e}	$ au_0^{ m e}$	$\Delta \tau^{\rm r}$	r^{r}	q	$ au_0^{ m r}$	$ au_0^{ m r}/ au_0^{ m e}$
01055		$/\mathrm{mbarn}^{-1}$		$/\mathrm{mbarn}^{-1}$	$/\mathrm{mbarn}^{-1}$			$/\mathrm{mbarn}^{-1}$	
r/s	-2.42	0.76	0.4	0.85	0.76	0.44	0.39	0.85	1.00
r/s	-2.55	0.71	0.3	0.62	0.7	0.34	0.32	0.63	1.02
r/s	-2.42	0.71	0.45	0.89	0.7	0.46	0.44	0.87	0.98
r/s (Pb)	-2.38	0.64	0.79	2.72	0.64	0.8	0.77	2.77	1.02
r/s	-2.25	0.77	0.42	0.89	0.76	0.52	0.35	0.88	0.99
r/s	-2.9	0.53	0.61	1.07	0.54	0.62	0.58	1.07	1.00
r/s	-2.47	0.61	0.37	0.61	0.62	0.44	0.33	0.62	1.02
r/s	-2.3	0.88	0.1	0.38	0.88	0.1	0.05	0.30	0.79
r/s	-2.72	0.69	0.16	0.38	0.68	0.12	0.09	0.29	0.76
r/s	-2.74	0.82	0.1	0.36	0.82	0.1	0.05	0.28	0.78
r/s (Pb)	-2.57	0.61	0.81	2.90	0.6	0.8	0.78	2.63	0.91
r/s (Pb)	-3.12	0.66	0.76	2.40	0.9	0.58	0.5	1.48	0.62
r/s	-2.75	0.72	0.67	1.80	0.76	0.68	0.64	1.87	1.04
r/s	$^{-2}$	0.71	0.01	0.15	0.7	0.1	0.05	0.24	1.60
r/s (Pb)	-2.31	0.68	0.63	1.47	0.68	0.56	0.52	1.11	0.76
s (Pb)	-2.25	0.45	0.44	0.55	0.44	0.5	0.32	0.47	0.85
s	-2.64	0.34	0.54	0.50	0.54	0.36	0.26	0.43	0.86
s	-2.7	0.52	0.58	0.95	0.52	0.66	0.51	1.02	1.07
s	-3.41	0.55	0.65	1.28	0.56	0.78	0.41	1.30	1.02
s (Pb)	-2.71	0.7	0.86	4.64	0.54	0.88	0.87	4.18	0.90
	class r/s r/s r/s (Pb) r/s r/s r/s r/s r/s r/s r/s r/s r/s (Pb) r/s r/s r/s r/s r/s r/s r/s r/s r/s r/s	class[Fe/H] r/s -2.42 r/s -2.55 r/s -2.42 r/s -2.42 r/s -2.42 r/s -2.25 r/s -2.25 r/s -2.27 r/s -2.47 r/s -2.31 r/s -2.74 r/s -2.74 r/s -2.72 r/s -2.74 r/s -2.75 r/s -2.75 r/s -2.75 s -2.64 s -2.7 s -3.41 s (Pb) -2.71	$ \begin{array}{c c} \mbox{Calculated result} \\ \hline \mbox{Class} \\ \hline \mbox{Fe}/H \\ \hline \mbox{Pe}/m \\ \hline $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $

3 不同s-过程模型对恒星观测丰度的拟合结果

如引言中所述,由于CPCB和CPRB模型中¹³C壳层形成的具体物理机制还不清

楚,因此在核合成计算中,¹³C壳层是根据观测约束人为引入的.考虑到AGB星s-过 程模型的不确定性因素,参数化AGB星s-过程模型对于解释s-核素增丰的形成仍然是 非常有用的.该模型最初由Howard等^[39]提出,后由Aoki等^[40]应用于贫金属星,最近又 被Zhang等^[41]进一步发展.参数化AGB星s-过程模型不遵循任何具体的恒星模型,目标 主要集中在AGB星内的核合成过程,探求能再现恒星观测丰度的AGB星s-过程核合成的 物理条件.

在AGB星对流s-过程核合成机制下,核素最终的丰度与4个物理量有关.它们是中子辐照时间 Δt ,中子数密度 N_n ,发生s-过程必须的温度 T_9 (以10⁹ K为单位)、重叠因子r,这些参量综合起来可以给出每个脉冲的中子辐照量 $\Delta \tau = N_n v_T \Delta t$.参数化CPCB模型会自然地产生一个满足(3)式的指数形式的DNE,恒星最终的s-过程核合成产量主要取决于平均中子辐照量 τ_0 .文献[37]和[41-44]给出了参数化AGB星对流核合成模型对20颗样品星中子俘获元素观测丰度的拟合结果,如表1中第4-6列所示,其中第1行各参量的上标"e"表示"指数中子辐照".计算中把中子数密度和温度 T_9 都取为常数,分别定为¹³C中子源对应的典型值10⁷ cm⁻³及0.1.

在AGB星辐射s-过程核合成机制中,核素最终的丰度与5个物理量有关,即中子辐照时间 Δt ,中子数密度 N_n ,发生s-过程必须的温度 T_9 、重叠因子r以及¹³C壳层占对流氦中间壳层的质量比例q,且每次照射的中子辐照量 $\Delta \tau = N_n v_T \Delta t$.文献[38]给出了参数化辐射核合成模型对这20颗星中子俘获元素观测丰度的拟合结果,如表1中第7–10列所示,其中第1行各参量的上标"r"表示"辐射核合成模型".显然,该模型没有给出其DNE的任何预设.

4 计算结果和讨论

为了检验(4)式的可靠性,我们将参数化CPRB模型拟合的模型参数r、q和 $\Delta \tau$ 的值 代入(4)式,计算出平均中子辐照量 τ_0 的值(表1第10列),并将其与指数DNE核合成模型拟 合的平均中子辐照量 τ_0 的值(表1第6列)对比.为便于比较,我们在表1第11列给出了各恒 星的 τ_0^r/τ_0^r 值,并在图1中示意出了 τ_0^r 对 τ_0^r 的符合程度(实心方块),图1直线代表 $\tau_0^r = \tau_0^r$ 的 数值点.

计算结果表明, 20颗星中有10颗星 τ_0^r 与 τ_0^e 值非常一致, 0.98 $\leq \tau_0^r/\tau_0^e \leq 1.07$; 有8颗星 基本一致, 0.76 $\leq \tau_0^r/\tau_0^e \leq 0.91$. 考虑到拟合参数的不确定性因素^[40-41], 上述结果充分 说明了(4)式的可靠性.

从计算结果还可以看出,有2颗星的r₀⁻与r₀^e值差异较大,他们都属于CEMP-r/s星. 其中一颗是HE 1305-0007, r₀⁻/r₀^e = 1.60.可以发现,该星对流参数化核合成模型给出 的重叠因子r^e的值很小,为0.01.Cui等^[42]对HE 1305-0007星的核合成计算结果表明, 几乎所有的s-过程核素都在接受一次中子辐照后产生.实际上,Aoki等^[40]在拟合LP 625-44和LP 706-7观测的元素丰度时已有类似发现,即在他们最佳拟合结果r = 0.1的 情况,除了铅,几乎所有的元素都在第一个中子照射里生产出来,即使铅丰度也在大 约3个复发的中子辐照后收敛,因此重叠因子很小意味着种子核经历单辐照.参数化 对流s-过程模型对HE 1305-0007星拟合的每个脉冲中子辐照量的值为0.71 mbarn⁻¹,这 和Ma等^[45]单辐照模型拟合的中子辐照量值0.72 mbarn⁻¹一致,充分印证了上述关于单 辐照的推断. 另外, 从表1中还可以看出, 20颗星中一共有4颗星重叠因子 r^{e} 值很小, 除HE 1305-0007外, 另外3颗是 τ_{0}^{i} 与 τ_{0}^{e} 值基本一致的星, 即HE 2148-1247、LP 625-44和LP 706-7 (对应的 $\tau_{0}^{r}/\tau_{0}^{e}$ 分别为0.79、0.76、0.78), 其 r^{e} 值分别为0.1、0.16和0.1, 而每个脉冲的中 子辐照量值分别为0.88 mbarn⁻¹、0.69 mbarn⁻¹和0.82 mbarn⁻¹, 与Ma等^[45]单辐照模型 拟合的结果0.9、0.7和0.84 mbarn⁻¹一致, 因此它们也应该属于单辐照星. 由此可以推 断, 单辐照可能是导致 τ_{0}^{e} 与 τ_{0}^{e} 不相符的一个重要原因.

Fig. 1 The comparison of $\tau_0^{\rm r}$ with $\tau_0^{\rm e}$

Goswami等^[46]分析了双超丰贫金属星HE 1305-0007的光谱. HE 1305-0007的中子 俘获元素丰度分布特点是:第1峰元素Sr、Y等的丰度远低于第2、3峰元素如Ba、Pb等 的丰度,但是元素丰度比[Pb/Ba]的值却仅仅是0.05.通常Na被认为产生于大质量恒星 内部的CNO燃烧,由于这颗星也表现出了Na超丰,Goswami等^[46]推断这是由一颗质量 较大的AGB星污染所致. HE 1305-0007金属丰度为[Fe/H]=-2.0,这正好是目前所观测 到的双超丰恒星的金属丰度上限.可见,HE 1305-0007是一颗比较特殊的s+r星,这或许 也是导致其元与元。不相符的一个因素.

另一颗 τ_0^{i} 与 τ_0^{e} 值不一致的星是CS 22183-015, $\tau_0^{i}/\tau_0^{e} = 0.62$. 该星重叠因子r的值虽 然并不极端,但也是一颗比较特殊的星.首先,它是一颗铅星;其次,Bisterzo等^[47]指出,不同文献给出的这颗星的金属丰度和大气参数的值存在明显差异,表明这颗星的演化 阶段是不确定的.另外,这颗星的金属丰度非常低,[Fe/H]=-3.12. Bisterzo等^[47]曾推断,对于极低的金属丰度,其AGB星核合成可能与起因于一个质子吞噬事件发生的规范模 型不同.以上这些因素都可能导致 τ_0^{i} 与 τ_0^{e} 不一致.

5 结论

利用文献中参数化AGB星s-过程核合成模型对20颗CEMP-s和CEMP-s/r星中子俘 获元素观测丰度的拟合结果,对¹³C壳层辐射燃烧的低质量AGB星s-过程核合成模型平 均中子辐照量₇₀的计算公式进行了检验,并初步探讨其在重元素s-过程核合成理论研 究中的作用.研究结果表明,在辐射s-过程核合成机制下,对于经历连续多次中子照射 的CEMP星,公式是适用的;与参数化AGB星s-过程核合成模型结合,公式可以作为一 个很好的CEMP单辐照星或特殊星的筛选工具.考虑到¹³C壳层的不确定性,公式在理 解CEMP星中子俘获元素观测丰度产生的物理条件中的作用值得做进一步的深入探讨.

参考文献

- [1] Burbidge E M, Berbidge G R, Fowler W A, et al. RvMP, 1957, 29: 547
- $[2]\,$ Cameron A G W. ApJ, 1955, 121: 144
- [3] Clayton D D, Fowler W A, Hull T E, et al. AnPhy, 1961, 12: 331
- [4] Clayton D D, Ward R A. ApJ, 1974, 193: 397
- [5]~ Seeger P A, Fowler W A, Clayton D D. ApJS, 1965, 11: 121
- [6] Käppeler F, Beer H, Wisshak K. RPPh, 1989, 52: 945
- [7] Arlandini C, Kappeler F, Wisshak K, et al. ApJ, 1999, 525: 886
- Ulrich R K. The S-process in Stars// Schramm D N, Arnett W D. Explosive Nucleosynthesis. Austin: University of Texas Press, 1973: 139-167
- [9] Busso M, Gallino R, Wasserburg G J. ARA&A, 1999, 37: 239
- [10] Käppeler F, Gallino R, Bisterzo S, et al. RvMP, 2011, 83: 157
- [11] Iben I Jr, Renzini A. ApJ, 1982, 249: L79
- [12] Iben I Jr, Renzini A. ApJ, 1982, 263: L23
- $[13]\,$ Hollowell D, Iben I Jr. ApJ, 1988, 333: L25
- [14] Straniero O, Gallino R, Busso M, et al. ApJ, 1995, 440: L85
- [15] Straniero O, Chieffi A, Limongi M, et al. ApJ, 1997, 478: 332
- [16] Gallino R, Arlandini C, Busso M, et al. ApJ, 1998, 497: 388
- [17] Busso M, Gallino R, Lambert D L, et al. ApJ, 2001, 557: 802
- [18] Straniero O, Gallino R, Cristallo S. NuPhA, 2006, 777: 311
- [19] Hustil, Gallino R, Bisterzo S, et al. PASA, 2009, 26: 176
- [20] Bisterzo S, Gallino R, Straniero O. MNRAS, 2011, 418: 284
- [21] Cristallo S, Karinkuzhi D, Goswami A, et al. ApJ, 2016, 833: 181
- [22] Trippella O, Busso M, Palmerini S, et al. ApJ, 2016, 818: 125
- [23] Bisterzo S, Travaglio C, Gallino R, et al. ApJ, 2014, 787: 10
- [24] Bisterzo S, Travaglio C, Wiescher M, et al. ApJ, 2017, 835: 97
- [25] Cristallo S. PASP, 2006, 118: 1360
- [26] Straniero O, Cristallo S, Gallino R. PASA, 2009, 26: 133
- [27] Cui W Y, Zhang F H, Zhang W J, et al. ChJAA, 2007, 7: 224
- [28] 张凤华,周贵德,张波. 天文学报, 2008, 49: 133
- [29] Zhang F H, Zhou G D, Zhang B. ChA&A, 2008, 32: 369
- [30] 张凤华,周贵德,崔文元,等.天文学报, 2013, 54:9
- [31] Zhang F H, Zhou G D, Cui W Y, et al. ChA&A, 2013, 37: 405
- [32] 张凤华,周贵德,马坤,等.天文学报,2015,56:564
- [33] Zhang F H, Zhou G D, Ma K, et al. ChA&A, 2016, 40: 322
- [34] Abatel C, Pols O R, Karakas A I, et al. A&A, 2015, 576: A118
- [35] Frebel A, Christlieb N, Norris J E, et al. ApJ, 2007, 660: 117

47-8

- [36] Beers T C, Christlieb N. ARA&A, 2005, 43: 531
- [37] Cui W Y, Shi J, Geng Y, et al. Ap&SS, 2013, 346: 477
- [38] Cui D N, Geng Y Y, Cui W Y, et al. ChPhL, 2009, 26: 39701
- [39] Howard W M, Mathews G J, Takahashi K, et al. ApJ, 1986, 309: 633
- [40] Aoki W, Ryan S G, Norris J E, et al. ApJ, 2001, 561: 346
- [41] Zhang B, Ma K, Zhou G D. ApJ, 2006, 642: 1075
- [42] Cui W Y, Cui D N, Du Y S, et al. ChPhL, 2007, 24: 1417
- [43] Cui W Y, Zhang B, Ma K, et al. ApJ, 2007, 657: 1037
- [44] Cui W Y, Shi J R, Geng Y Y, et al. ChPhL, 2009, 26: 477
- [45] Ma K, Cui W Y, Zhang B. MNRAS, 2007, 375: 1418
- $\left[46\right]$ Goswami A, Aoki W, Beers T C, et al. MNRAS, 2006, 372: 343
- [47] Bisterzo S, Gallino R, Straniero O, et al. MNRAS, 2012, 422: 849

Application of the Calculating Formula for the Mean Neutron Exposure in CEPM-s and CEPM-r/s Stars

ZHANG Feng-hua^{1,2} ZHANG Lu³ CUI Wen-yuan² ZHANG Bo²

(1 Department of Physics and Information Engineering, Cangzhou Normal University, Cangzhou 061001)

(2 College of Physics Science and Information Engineering, Hebei Normal University, Shijiazhuang 050024)

(3 College of Mathematics and Information Science, Hebei Normal University, Shijiazhuang 050024)

ABSTRACT Recent studies have shown that, for the current s-process nucleosynthesis model for the low-mass asymptotic giant branch (AGB) stars with ¹³C pocket radiative burning during the interpulse period, the neutron exposure distribution in the nucleosynthesis region can be regarded as an exponential function, and the relation between the mean neutron exposure τ_0 and the model parameters is $\tau_0 = -\Delta \tau / \ln[q/(1-r+q)]$. in which $\Delta \tau$ is the exposure value of each neutron irradiation, r is the overlap factor, and q is the mass ratio of the 13 C shell to the He intershell. Using the published data resulted from fitting the observed abundances of neutron-capture elements in 20 CEMP (Carbon-Enhanced Metal-Poor)-s and CEMP-s/r stars with the parametric AGB stellar s-process model, the reliability of the derived formula is tested, and further more the application of the formula in the s-process nucleosynthesis study is explored preliminarily. Our results show that, under the radiative s-process nucleosynthesis mechanism, the formula is suitable for CEMP stars experiencing recurrent neutron exposures. Combined with the parametric AGB nucleosynthesis model, the formula could be regarded as an effective tool to screen the CEMP stars with a single neutron exposure or a special type. Considering the uncertainty of the ¹³C pocket, the role of this formula in understanding the physical conditions necessary to reproduce the observed s-process abundances in CEMP stars needs further study.

Key words stars: AGB and post-AGB, nuclear reactions, nucleosynthesis, abundances, methods: analytical