doi: 10.15940/j.cnki.0001-5245.2022.04.002

射电天文台址常驻电磁干扰检测与识别方法*

蔡明辉^{1,2} 刘 奇^{1,2†} 王 玥^{1,2} 苏晓明^{1,2} 党振伟¹ 张国福¹

(1 中国科学院新疆天文台 乌鲁木齐 830011)(2 新疆微波技术重点实验室 乌鲁木齐 830011)

摘要 为有效统计射电天文台址常驻电磁干扰的变化,提高实时电磁环境监测效率,提出一种基于先验信息的 常驻电磁干扰信号检测与识别方法.首先通过信噪分离,信号能量估值从电磁环境历史监测数据中提取移动通 信,地面数字电视等常驻大信号的中心频率、极化方式、来波方向等特征,经对无线信号传播信道的衰落方式 进行分析,提出信号能量模型服从的分布函数假设并采用K-S检验验证该假设,合理设置能量阈值,建立信号模 板库.其次,根据信号模板库中的信号特征对实时频谱数据进行双门限能量检测、信号相关性识别,从而提高信 号检验的准确率,实现了常驻信号的快速统计.针对射电天文台址实测频谱,运用该方法能够有效识别并统计频 谱中的常驻信号,从而为台址干扰缓解策略制定提供重要依据.

关键词 射频干扰, 假设检验, 信号识别, 信号模板 中图分类号: P127; 文献标识码: A

1 引言

大口径射电望远镜具有极高的灵敏度和很宽的工作频率范围,因此观测时极易受到台址内外各类电磁信号的干扰,这些干扰主要来自人类生产生活所产生的各类无线电信号.国际电信联盟(International Telecommunication Union, I-TU)所属的无线电通信部门协调全球的无线电频谱资源,在建议框架中制订了频率分配和运行规则的综合清单,包括电台允许的广播频段和功率、射电天文受保护的频段等.国际电联只为射电天文业务(Radio Astronomy Service, RAS)分配了非常有限的频谱资源.实际工作中,天文学

家对宽带接收和记录数据的需求不断提升,于 是RAS系统的工作带宽不断增加,而且射电天文 业务是一种被动(接收)业务,很容易受到调频广 播(Frequency Modulation, FM)、电视信号(TV)、 公众移动通信(Mobile Global System for Mobile Communications,如Mobile GSM、Mobile Code Division Multiple Access (Mobile CDMA)、Mobile Long Term Evolution (Mobile LTE))、卫星定位系 统(如Global Positioning System, GPS)和飞机导 航通讯(如Inmarsat)等主动(发射)业务的影响,导 致观测数据丢失和数据质量的降低^[1-2].表1列举 了主要的射频干扰(Radio Frequency Interference, RFI)来源.

²⁰²¹⁻⁰⁸⁻⁰²收到原稿, 2022-03-28收到修改稿

^{*}中国科学院"西部之光"人才培养引进计划(2019-XBQNXZ-B-020),国家自然科学基金项目(11973077、12003061),新 疆维吾尔自治区自然科学基金项目(2021D01E07),中国科学院天文台站设备更新及重大仪器设备运行专项经费资助

 $^{^{\}dagger} liuqi@xao.ac.cn$

Table 1 Part of the	e main sources of RFI co	ntamination at low radio frequencies
Part of RFI source	Frequency/MHz	Characteristic
FM	87–108	Narrow band, persistent
TV	4884,160230,470806	Broad band, persistent and transient
Mobile GSM	900, 1800, 1900	Narrow band, persistent
Mobile CDMA	1900, 2000	Narrow band, persistent
Mobile LTE	1900, 2300, 2600	Narrow band, persistent
GPS	1227.6, 1575.42	Persistent
Inmarsat	1525 - 1559	Persistent

国内外学者对射电望远镜受到的电磁干扰开 展了深入研究, Waterman^[3]讨论了影响射电望远 镜工作的各种电磁干扰源,其中卫星传输、电视发 射塔、移动通信基站是影响射电观测最主要的射 频干扰源,在实际射电天文观测过程中这些干扰信 号使得干涉仪接收机安全饱和. 大多数情况下, 这 些无线电设备的带外和杂散辐射超标是引起干扰 的主要原因^[4]. Bolli等人分别采用了固定和移动监 测手段,对撒丁岛射电望远镜台址附近的电磁干扰 进行了监测,提出适当的连续性射频干扰监测对于 确保射电望远镜的正常运行至关重要:在分配给 RAS的频段内发生的射频干扰,必须连同(实验检 测到的)有害性向国家无线电管理部门报告;根据 对特定时间(如夜间或周末)预期"无干扰"的统计性 评估,动态安排射电天文观测^[5].在电磁干扰信号 识别方面, 王利云等人通过将频谱中的信号与历史 信号进行相似性分析,判断是否为同一信号[6].但 当历史信号未发射,但其信号频段被其他信号占 用,例如与原信号调制方式一致的新发信号或其他 信号的谐波、互调等, 仅通过对信号包络的相关性 计算判断两个信号是否为同一信号会造成误判.

综上所述,良好的无线电环境是射电天文观测科学产出的重要保证,为确保对望远镜台址各类电磁干扰的有效监测,目前新疆天文台己在110m射电望远镜台址(110m Qi Tai radio Telescope,QTT)安装部署了自动化、高可靠性电磁环境测试系统,实现了对射电望远镜周边0°-360°方位,水平极化、垂直极化电磁干扰的监测^[7-8].但在电磁干

扰信号的分析判断方面,仍需要占用技术人员较多时间与精力.

本文针对天文台址电磁环境频谱中的地面数 字电视、公众移动通信等常驻大信号,提出了一 种信号检测与识别方法.首先对常驻信号的业务 类型、传播信道、调制方式进行分析,通过信噪分 离、信号能量估值从电磁环境历史监测数据中提 取移动通信、地面数字电视等常驻大信号的中心 频率、极化方式、来波方向等特征,经对无线信号 传播信道的衰落方式进行分析,提出信号能量模型 服从的分布函数假设并采用K-S检验验证该假设. 合理设置能量阈值,建立信号模板库;然后将实时 频谱数据与信号模板库中的信号进行双门限能量 检测与相关性判断,统计信号在监测周期内出现的 次数及变化情况,经实际测试该方法可提高常驻电 磁干扰检测与识别的准确率与时效性, 为望远镜建 设及运行阶段系统电磁兼容性设计、干扰缓解策 略制定、台址无线电管理提供重要依据.

2 电磁环境测试系统

在射电望远镜台址安装部署的自动化电磁环 境测试系统由测量天线(HL033、HL050)、射频接 收模块(RF box)、天线云台(G5500)及控制器(Rotator controller)、升降装置、信号分析仪(R&S F-SW13)、控制计算机(PC)、直流电源(DC power supply)及射频线缆(RF cable)、系统控制与监控 线(Control&monitor)、云台控制线(Pan tilt control)、串口线(RS232)、网线(LAN)等组成,如图1

表 1 低频射电天文观测中部分主要RFI来源

4 期

所示.测量天线采用对数周期天线,工作带宽分别 覆盖100 MHz-2 GHz及2-12 GHz频段,天线云台 满足360°方向水平转动及水平、垂直极化切换需 求.将信号分析仪、控制计算机、云台控制器等安 装于屏蔽机柜(Shield cabinet)内,避免自身电磁干 扰影响测量结果^[8].

电磁环境监测系统的核心部分是射频接收模块,采用两个标准噪声源(Noise source 1, Noise source 2)对0.1-2 GHz和2-12 GHz微波链路系统增益和系统噪声温度进行测量,选用性能优异的低噪声放大器(LNA1、LNA2、LNA3、LNA4)确保监测系统拥有较好的灵敏度,该模块链路结构如图2所示(其中S1、S2、S3、S4、S5为射频开关,ATT1、ATT2、ATT3为衰减器,H-pf为高通滤波器)^[8].对系统整体性能进行测试时,在重点测试频段100 MHz-6 GHz要求噪声系数小于2.5 dB、系统增益大于40 dB、动态范围达到-127-37 dBm即90 dB.

3 常驻信号分析

经对天文台址电磁环境测试频谱序列进行统计,电视发射塔、移动通信基站、卫星传输等是影响射电观测最主要的固定干扰源,其所发射的信号占总信号数量60%以上而且射频特性稳定.为了有效地对这些常驻信号进行检测与识别,需要对其

业务类型、传播信道进行分析,掌握信号的发射频 率、占用带宽、场强的变化规律等特征信息.

Fig. 2 Rf receiver link^[8]

3.1常驻信号业务类型

移动通信业务: 3大运营商2G、3G、4G相关业 务均已覆盖,工作频段在800-2700 MHz范围内,多 种制式并存,调制方式主要为高斯最小频移键控、 正交相移键控、8 移相键控、正交幅度调制等^[9]. 通常2G网络发射功率为60W.3G网络发射功率 为40 W, 4G网络发射功率为20 W; 对射电天文观 测影响较大的为2G 业务, 对于山区为达到信号覆 盖范围更广,存在增大功率发射情况,随着5G网络 建设的加快,后续密切关注广电与移动共建共享的 700 MHz、C波段的5G通信信号发射情况.

广播电视业务: 地面电视信号频率范围跨度 广. 通常在40-80 MHz和160-230 MHz的甚高频以 及470-960 MHz的超高频频带. 经长期频谱监测 结合广电总局于2020年发布的、关于按规划关停 地面模拟电视有关工作安排的通知,要求各地 于2020年12月31日前完成关停中央、省、市、县 地面模拟电视信号工作,当前在台址所监测到的电 视信号均为数字信号,频段分布在400-800 MHz频 段,采用时域同步正交频分复用技术,支持多种调 制方式: 64种符号、32种符号、16种符号、4种符 号的正交振幅调制^[9]. 其辐射源特点为功率较大, 覆盖距离远(几十公里至几百公里), 对射电天文低 频观测影响较大.

卫星通信业务:频谱监测数据显示卫星通信业 务主要包括卫星电话和导航业务,电磁干扰信号特 征及影响分析如下:卫星电话主要有海事卫星 (Inmarsat)和欧星(Thuraya),工作频段1525-1559 MHz, 来自120°-180°方向; 铱星(Inridium), 工作频段1610-1626.5 MHz. 卫星导航电磁干扰为 下行通信业务,其信号特点为覆盖范围极广,为右 旋圆极化,信号来自120°-240°方向,工作带宽约 2 MHz, 工作频段覆盖1559-1604 MHz,包括美 国全球定位系统(GPS)/俄罗斯格洛纳斯(Global Navigation Satellite System, GLO-NASS)/欧洲伽 利略(GALILEO) (1575.42 MHz), 中国北斗导航卫 星(1561.098 MHz、1575.42 MHz).

3.2 传播信道分析

无线信号的发射功率决定了信号的电场强度,

直接关系着信号的覆盖范围、覆盖质量、可靠性 等,通常常驻信号的发射功率按照标准配置基本保 持恒定^[9-10].

信号在传播过程中遇到山体、树木等会产生 反射、散射等现象,都会在链路的发射端和接收端 之间形成多条传输路径,而这些传输路径对无线通 信会造成严重的影响,简称为多径效应.经过不同 路径到达接收端的信号具备不同的传输时延,相位 旋转和幅度增益,因而在接收端接收到的信号是多 条路径的复合信号,当上述复合信号的各个多径信 号分量相抵消时,就会造成严重的信号衰落.

在台址区域中无线电信号的衰落方式主要为 大尺度衰落,可以分为:(1)随着传播距离增加导致 信号衰减的路径损耗;(2)由于障碍物遮挡、地形特 性导致的电磁波阴影区域中,理想路径损耗模型产 生较大变化的阴影衰落. 大尺度衰落现象可以用对 数正态模型来描述,这一模型的信号幅值遵循正态 分布^[11-12].

3.3 信号识别

调制信号的调制样式是区分不同通信信号的 重要特征. 近年来国内外学者对调制样式的自动识 别技术进行了大量的研究,处理调制类型识别问题 一般采用两种方法: 判决理论法和统计模式识别 法. 判决理论方法根据信号的统计特性, 得到检验 统计量, 然后与一个合适的门限进行比较. 但在实 际应用中存在识别过程中要求的参数太多,表达式 计算复杂且难于处理等问题. 统计模式识别算法是 从已知信号样本中提取特征参数并给定误差对信 号进行识别,该方法在低信噪比的情况下难以提取 信号特征参数, 识别能力低^[13].

综上所述,常驻信号的发射频率和调制方式固 定,发射功率按照标准配置基本保持恒定,传播信 道存在大尺度衰落现象,但信号幅值遵循正态分 布.因此本文针对实时频谱序列提出了一种常驻干 扰信号检测及识别方法,处理流程如下:首先,根据 历史频谱数据提取信号频率、能量、频谱等特征 信息,存储于信号模板库;然后,将实时频谱数据与 信号模板库中的信号进行双门限能量检测与相关 性判断,统计信号在监测周期内出现的次数,实现

4 期

Г

٦

台址常驻干扰信号的检测与识别.

4 信号检测与识别方法

实现频谱序列中常驻信号的检测与识别需解 决以下信号处理问题: (1)准确提取监测频谱序列中 的常驻信号频谱, 以便进一步获得信号特征; (2)根 据信号的发射和传播特性, 获得信号能量的分布函 数, 合理设定能量阈值并结合其他特征信息建立信 号模板库; (3)选取信号相关性识别方法, 分析频谱 序列中干扰信号与信号模板库中信号的相似性, 实 现实时监测频谱序列中常驻干扰信号的快速检测 和识别.

4.1 信号提取

依据无线电频谱监测中应用广泛的频谱噪声统计法^[14]及无线电业务频率划分^[15]确定常驻信号的起始、截止频率,进而从频谱序列中提取出2维频谱信号*P*{*f*,*E*},其中*f*表示信号频率信息,*E*表示幅度信息.由于电磁环境监测依据测试频段内业务的特点进行分段测试分段存储,需要将信号*P*与所在频段中的存储序列进行匹配,以便提取出信号对应的频率点分布和幅度信息:由于*f*采取等间隔采样与存储顺序α成线性关系,采用简单线性回归方程来描述:

$$f = \beta_0 + \beta_1 \alpha + \epsilon \,, \tag{1}$$

其中, β₀是截距、β₁是斜率(即回归系数)、ε是误差 项. 定义*n*为频率点列表的长度,将信号*P*所在频段 的频率点列表及次序写成矩阵形式:

$$\begin{cases} f_1 \\ f_2 \\ \vdots \\ f_n \end{cases} = \begin{bmatrix} 1 & 1 \\ 1 & 2 \\ \vdots & \vdots \\ 1 & n \end{bmatrix} \cdot \begin{bmatrix} \beta_0 \\ \beta_1 \end{bmatrix} .$$
(2)
$$\diamondsuit \mathbf{F} = \begin{bmatrix} f_1 \\ f_2 \\ \vdots \\ f_n \end{bmatrix} \doteqdot \overrightarrow{a} \overrightarrow{a} \overrightarrow{a} \overrightarrow{a} \overrightarrow{b} \overrightarrow{b} \overrightarrow{a} \overrightarrow{b} \overrightarrow{b} \overrightarrow{b} \overrightarrow{b}, \mathbf{A} =$$

$$\begin{vmatrix} 1 & 1 \\ 1 & 2 \\ \vdots & \vdots \\ 1 & n \end{vmatrix}, \boldsymbol{B} = \begin{bmatrix} \beta_0 \\ \beta_1 \end{bmatrix} \boldsymbol{\emptyset} \neq \boldsymbol{S} \boldsymbol{\mathfrak{T}} \boldsymbol{\mathfrak{T}} \boldsymbol{F} = \boldsymbol{A} \boldsymbol{B}, \boldsymbol{\Xi} \boldsymbol{\Psi} \boldsymbol{B}$$

 $\vec{\mathbf{F}}$,\运算符表示执行最小二乘回归. 将常驻 信号的起始频率 f_{start} 、截止频率 f_{end} 代入回归方程 中得到起始次序 $[a_{\text{start}}]$ 、截止次序 $[a_{\text{end}}]$,其中[]表 示取最邻近的整数.则信号样本在频谱中存储的序 列为: $[a_{\text{start}}], [a_{\text{start}}] + 1, \cdots, [a_{\text{end}}]$.

4.2 信号能量阈值估计

定义信号频谱能量:

$$G = 10 \lg \left(\sum_{i=\left[\alpha_{\text{start}}\right]}^{\left[\alpha_{\text{end}}\right]} E_i^2 \right), \qquad (3)$$

其中i为信号样本在频谱中存储的序列, E_i为幅度 采样值, G为信号能量估值.依据一轮(在水平、垂 直两个极化下, 0°-360°方位间隔60°轮巡)监测过程 中信号能量估值的最大值为信号能量值, 对应的极 化及方位为该信号的极化方式、来波方向.

根据§3.2分析,常驻信号的发射功率按照标准 配置基本保持恒定,信号传播过程中衰落方式为大 尺度衰落,信号能量遵循正态分布.严格意义上应 当对以上假设进行检验,由于信号能量总体的分布 形态未知,需要使用与总体分布统计无关的假设方 法即非参数方法来检验信号能量值是否满足正态 分布.K-S检验是一种极其重要的拟合优度非参数 检验方法,它利用样本数据推断总体是否服从某一 理论分布,具体是将样本的实际累计分布和假设的 理论分布进行对比,计算两个分布函数之间距离的 最大值D.若D值在要求对应的置信区间内,就可 以判定这个样本服从这个假设的分布,否则认定样 本与假设之间具有显著性差异.

采集不同时间段内信号能量值的多轮监测结 果,利用K-S检验能量样本观测值是否近似服从正 态分布,检验统计为:

$$D = \max(|F_{\zeta}(z) - G(z)|), \qquad (4)$$

其中F_ζ(z)为信号频谱能量值的经验分布函数,

$$39-5$$

G(z)为指定的分布函数. 其原假设: 信号频谱能 量值服从正态分布. 当 $D > D(\zeta, \delta)$ 则拒绝原假设, 否则接受原假设. 式中 ζ 、 δ 分别表示样本数量及检 验的显著性水平, 著名的统计学家R.A Fisher建议 δ 取0.05为宜^[16], $D(\zeta, \delta)$ 由K-S临界值表在指定的 ζ 、 δ 给出.

能量阈值 λ_1 、 $\lambda_2(\lambda_1 < \lambda_2)$ 根据信号频谱能量 所服从的正态函数合理设定, 即 λ_1 、 λ_2 取正态分布 的某一上下分位点.

4.3 信号模板库建立

根据业务类型对常驻信号进行分类,从历史频 谱数据中提取完整的信号信息存入信号模板库. 目前常驻信号分为地面数字电视信号、移动 通信信号、卫星业务信号(导航、卫星电话)3类.

信号特征信息包含特征信息表和数值表,特 征信息表包括:信号的极化方式(Polarization)、来 波方向(Azimuth)、中心频率(Center frequency)、 能量阈值(Signal Threshold);数值表为信号频率信 息及对应场强数值表(*f&E* list).其中中心频率为 起始频率和截止频率的均值,极化方式、来波方 向、能量阈值依据§4.2所述确定;频率点及对应场 强数值表按照§4.1中的信号提取方式获得,为进一 步的信号相似性分析提供支撑.信号模板库结构如 图3所示.

图 3 常驻信号模板库结构

Fig. 3 The structure of resident signal template library

4.4 双门限能量检测

在电磁频谱检测方法中, 能量检测算法具有复 杂度低、检测速度快等特点, 是一种可靠的盲源 检测算法, 在实际工程中应用广泛. 双门限能量检 测可解决信号能量值不确定的问题, 提高判决结 果的可靠性. 双门限能量检测根据信号能量阈值 λ_1, λ_2 确定判决门限, 然后将G与判决门限进行比 较, 若 $\lambda_1 \leq G \leq \lambda_2$, 则判决假设 H_0 成立: 常驻信号 存在; 若 $G < \lambda_1$, 则判决假设 H_1 成立: 信道空闲, 信 号不存在; 若 $G > \lambda_2$,则判决假设 H_2 成立:发出能 量告警,信号能量值过大,可能会导致接收机饱和. 则能量检测的三元假设模型为:

$$\begin{cases} H_0 : \lambda_1 \leqslant G \leqslant \lambda_2 \,, & \text{Existence} \,, \\ H_1 : G < \lambda_1 \,, & \text{Disappear} \,, \\ H_2 : G > \lambda_2 \,, & \text{Alarm} \,. \end{cases}$$

4.5 相关性识别

由于常驻信号的调制样式保持不变,可以通过

对信号包络的相关性识别判决实时采样信号与模 板库中的信号是否为同一信号.皮尔逊系数广泛 用于度量两个变量之间的相关程度,其优点在于: (1)能够区分正相关与负相关;(2)对相关程度的变 化敏感.通过计算模板信号与实时频谱信号的皮尔 逊系数来判断是否属同一信号.皮尔逊系数可表示 为:

$$\gamma = \frac{\sum_{j=\psi}^{\omega} (X_j - \overline{X})(Y_j - \overline{Y})}{\sqrt{\sum_{j=\psi}^{\omega} (X_j - \overline{X})^2} \sqrt{\sum_{j=\psi}^{\omega} (Y_j - \overline{Y})^2}}, \quad (5)$$

其中j为信号样本在频谱中存储的序列, ψ 、 ω 分别 为信号样本在频谱中存储的起始和截止次序, X_j 、 Y_j 分别为信号采样值及对应的模板值, \overline{X} 、 \overline{Y} 分别 为采样值均值、模板值均值.

皮尔逊系数的绝对值 $|\gamma|$ ∈ [0,1], $|\gamma|$ 的值越趋 近于1, 表明信号X与信号Y相似程度越高; $|\gamma|$ 的值 越趋近于0,表明信号*X*与信号*Y*相似度程度越低. 通过确定相似阈值,若γ大于阈值,认为两个信号相 关,反之则不相关.相关阈值的选取影响信号分析 的精度,需要合理选取.

4.6 算法流程

根据历史监测数据确定常驻信号的起止频率 并从频谱序列中提取出2维频谱信号.计算信号能 量估值,其中的最大值为信号能量值,信号能量值 的极化及方位为该常驻信号的极化方式、来波方 向.根据能量值的分布函数确定信号能量阈值,结 合上述信号特征建立常驻信号模板.读取实时频 谱,将频谱特征与信号模板库中的特征信息表进行 匹配.首先进行双门限能量检测,若频谱信号能量 低于下门限时判断常驻信号消失(未发射),高于上 门限时发出能量告警(功率过高可能会导致监测系 统饱和).当信号能量在能量阈值范围内时对信号 包络进行相关性识别,若频谱信号的调制样式与模 板信号一致则为常驻信号,算法流程如图4所示.

图 4 常驻电磁干扰检测与识别算法流程

Fig. 4 Algorithm flow of resident EMI detection and identification

5 实例分析

本节拟从射电天文台址电磁环境历史实测数 据中提取出常驻信号特征建立信号模板库,将实时 频谱数据与模板库中的信号特征进行比对,实现信 号检测与识别为例说明本方法的科学合理性. 台址电磁环境频谱数据按照极化、方向的不同分频段保存^[17]. 经分析某地面电视信号频段为670-678 MHz、移动GSM900下行信号频段为935-954 MHz,从0.4-2 GHz频段监测数据中提取出以上信号,该频段共有53334个频率点即*n* = 53334,结合频段频率点列表代入(2)式,得:

$$\boldsymbol{B} = \begin{bmatrix} \beta_0 \\ \beta_1 \end{bmatrix} = \begin{bmatrix} 399.97 \\ 0.03 \end{bmatrix} . \tag{6}$$

将电视信号、通信信号的起止频率代入(2)式 及(6)式中,则电视信号、移动信号在频谱中存 储的序列分别为9001、9002、...、9268和17834、 17835、 ···、 18468. 根据(3)式计算的能量估值如 表2所示(SN表示信号能量估值序列对应 G_1 , ···, G_{12} ; POL表示接收天线的水平和垂直极化分别对应H、V; AZ表示接收天线的指向方位对应0°, ···, 300°; TV代表电视信号, COM代表移动通信信号, NRG EST为能量估值.).

表 2 不同极化和方向下的信号能量估值 Table 2 Estimation of signal energy under different polarization and direction

				-		
\mathbf{SN}	G_1	G_2	G_3	G_4	G_5	G_6
POL/AZ	$\mathrm{H}/\mathrm{0}^{\circ}$	$\rm H/60^\circ$	$\rm H/120^\circ$	$\rm H/180^\circ$	$\rm H/240^\circ$	$\rm H/300^\circ$
TV NRG EST	68.782753	67.150513	88.256592	105.33994	93.680740	76.398705
COM NRG EST	145.86574	131.63054	120.71227	128.26501	127.17479	144.58414
SN	G_7	G_8	G_9	G_{10}	G_{11}	G_{12}
POL/AZ	$V/0^{\circ}$	$V/60^{\circ}$	$V/120^{\circ}$	$V/180^{\circ}$	$V/240^{\circ}$	$V/300^{\circ}$
TV NRG EST	63.351639	68.059128	85.472527	89.752731	82.495804	72.942192
COM NRG EST	150.39568	179.98816	191.43665	187.40207	153.62897	137.44440

表2中电视信号的能量值即能量估值最大值 为105.33994,移动通信信号的能量值为191.43665, 对应的极化方式、来波方向(DOA)如表3所示.

表 3 电视与通信信号特征 Table 3 Characteristics of energy value of TV and COM signals

Signal characteristics	POL	DOA
TV	Η	180°
COM	\mathbf{V}	120°

选取连续4 d的历史频谱数据, 即单一极化、单 一方向下共计38组信号样本值. 再由(3)式求得电 视信号、移动信号的38组能量值如表4所示.

使用K-S检验方法,在显著性水平0.05下,表4 中的地面电视信号能量近似服从均值109.9820、标 准差为5.7927的正态分布;移动通信信号能量近似 服从均值197.94、标准差为5.14的正态分布.取正 态分布的上0.01分位点、下0.01分位点为能量阈值 的上下限,则电视信号λ₁、λ₂分别为96.5、123.45; 移动通信λ₁、λ₂分别为185.9826、209.8974.信号 能量分布函数(x表示信号能量分布, F(x)表示信号 能量分布函数, 均为无量纲)如图5和图6所示.

Fig. 5 Energy distribution function of TV signal

建立信号模板库,信号的特征信息表如表5所示(SIG表示不同的常驻信号对应TV和COM; f_c表示信号的中心频率; Lower NRG THR和Upper N-RG THR分别对应信号能量阈值的下限和上限.),数值表取与统计值均值最邻近的频率/场强2维数组,即电视信号取序列号20 (110.0617),移动信号取序列号10 (197.9639)所对应的P{f,E}.

使用该方法对射电天文台址电磁环境频谱进

行连续一周测试统计,选取样本信号一天测试值 即19组能量值进行举例,如表6所示.

常驻信号能量值均在信号模板库能量阈值范 围内,进行下一步相关性识别.经大量试验,信号样 本与信号模板高度相关,相关性系数下限可取0.6, 信号相关性如图7和图8所示.

对信号调制样式进行相关性识别,样本信号19 组相关系数如表7所示.相关性系数均大于0.6,判断为常驻信号,与人工判断吻合.

图 6 通信信号能量分布函数

Fig. 6 Energy distribution function of COM signal

SN	TV	COM	SN	TV	COM	SN	TV	COM
1	105.3399	191.4367	14	116.0684	201.495	27	99.35794	202.291
2	112.1356	191.9573	15	116.6958	201.2943	28	102.6762	203.5538
3	107.0457	192.1	16	111.0825	199.7009	29	106.9791	205.6003
4	107.3967	192.9544	17	105.2077	194.5324	30	112.8193	206.0185
5	112.6637	194.2156	18	104.6287	193.425	31	118.2909	206.7691
6	109.4447	195.0232	19	103.8677	194.3133	32	118.244	207.0259
7	110.1481	195.2499	20	110.0617	197.2149	33	118.5309	207.254
8	111.404	195.8479	21	109.1166	198.5669	34	118.7509	205.1263
9	111.8443	196.684	22	107.3417	187.4467	35	119.1036	195.2627
10	112.4374	197.9639	23	105.2075	198.7534	36	113.0064	192.9031
11	113.3443	200.1851	24	103.2537	195.6201	37	109.7519	191.906
12	115.0977	200.9503	25	96.87508	197.9085	38	109.1833	191.4892
13	116.0425	201.4826	26	98.87082	200.3102			

表 4 电视、通信信号能量值统计 Table 4 Statistics of energy value of TV and COM signals

表 5 电视、通信信号特征信息表 Table 5 Characteristic information table of TV and COM signals

					0
SIG	POL	DOA	$f_{\rm c}/{\rm MHz}$	Lower NRG THR	Upper NRG THR
TV	Η	180°	674	96.5	123.45
COM	V	120°	944.5	185.98	209.90

Table 6 Energy value of TV and COM signals								
SN	TV	COM	SN	TV	COM	SN	TV	COM
1	103.4511	191.6863	8	112.0683	197.3875	15	116.2047	197.9678
2	104.1806	191.3165	9	112.8794	198.8284	16	110.4534	192.8794
3	106.2267	190.833	10	114.0898	200.0958	17	106.1829	192.0111
4	105.9268	190.6283	11	115.1297	201.0517	18	105.3359	191.577
5	105.8403	191.1342	12	115.8033	201.1559	19	105.3672	191.6834
6	107.3583	193.4638	13	116.7104	201.5499			
7	110.6024	196.0694	14	116.4714	201.0725			

表 6 电视、通信信号能量值 [able 6 Energy value of TV and COM signal]

表 7 电视、通信信号相关系数 Table 7 Correlation coefficient of TV and COM signals

SN	TV	COM	SN	TV	COM	SN	TV	COM
1	0.905	0.8968	8	0.6957	0.9104	15	0.7471	0.8915
2	0.925	0.8958	9	0.7769	0.8962	16	0.6897	0.8996
3	0.835	0.9036	10	0.6856	0.9895	17	0.874	0.9163
4	0.8574	0.9243	11	0.7105	0.9832	18	0.9153	0.9463
5	0.8134	0.9095	12	0.6926	0.9547	19	0.9132	0.8855
6	0.8324	0.9088	13	0.6788	0.9428			
7	0.7509	0.8993	14	0.7937	0.9716			

Fig. 7 Energy distribution function of TV signal

对台址内所有常驻电磁干扰连续监测一个月的统计结果为:存在3个电视信号凌晨期间停发(Off Time),其他时间持续发射(Run Time),频道占用

度(Channel Occupancy)接近80%,如表8所示;其 余电视信号、移动通信信号及卫星业务信号均为 连续发射,频道占用度为100%,统计结果与人工判 断吻合.

表 8 间断发射电视信号统计结果 Table 8 Statistical results of discontinuous TV signals

		<i>.</i>
Off Time	Run Time	Channel Occupancy
AM 2: 00–AM 7: 00	AM 7: 00–AM 2: 00 (the next day)	79.2%
AM 2: 00–AM 7: 00	AM 7: 00–AM 2: 00 (the next day)	79.2%
AM 2: 00–AM 7: 00	AM 7: 00–AM 2: 00 (the next day)	79.2%
	Off Time AM 2: 00–AM 7: 00 AM 2: 00–AM 7: 00 AM 2: 00–AM 7: 00	Off Time Run Time AM 2: 00-AM 7: 00 AM 7: 00-AM 2: 00 (the next day) AM 2: 00-AM 7: 00 AM 7: 00-AM 2: 00 (the next day) AM 2: 00-AM 7: 00 AM 7: 00-AM 2: 00 (the next day)

6 结论

为了提高射电天文台址电磁环境监测频谱分析的时效性,本文提出了一种常驻电磁干扰检测与 识别方法. 经实际测试,该方法可提高信号判别的 准确率,实现监测频谱中常驻干扰信号的自动识别 与统计,为台址干扰缓解策略制定提供重要依据: 根据无线电宁静区保护办法,在无线电主管部门的 牵头下协调用频单位产生干扰的发射设备,根据 实际情况调整其发射功率,方位、俯仰角等. 也可 根据对特定时间(如夜间或周末)预期"无干扰"的统 计性评估,动态安排射电天文观测. 后续工作安排: (1)随着5G网络建设的加快,密切关注台址内常驻 信号的变化情况,实时更新常驻信号模板库;(2)统 计信号能量随时间慢衰落的变化特征;(3)探索短 时猝发干扰信号的识别方法.

参考文献

[1] Fridman P A, Baan W A. A&A, 2001, 378: 327

- [2] 安涛, 陈骁, Mohan P, 等. 天文学报, 2017, 58: 43
- [3] Waterman P J. ITEIC, 1984, EMC-26: 29
- [4] 刘斌,方正.中国无线电,2009,3:51
- [5] Bolli P, Gaudiomonte F, Ambrosini R, et al. IAPM, 2013, 55: 19
- [6] 王利云, 刘奇, 陈卯蒸, 等. 天文学报, 2019, 60: 40
- [7] 刘奇, 王娜, 王玥, 等. 电波科学学报, 2017, 32: 718
- [8] 刘奇, 王玥, 刘晔, 等. 中国科学(物理学力学天文学), 2019, 49: 099512
- [9] 翟国庆,周兵,贾丽,等. 中国环境科学, 2010, 30: 1293
- [10] 周忠. 电子世界, 2021, 8: 204
- [11] 张永泰. 遥测遥控, 2000, 21: 26
- [12] 黄继斌. 无线衰落信道模型验证方法研究. 合肥: 合肥工业大学, 2020: 7-12
- [13] 罗吉. 数字调制信号识别算法研究. 成都: 电子科技大学, 2008: 5-8
- [14] ITU. Spectrum Occupancy Measurements and Evaluation: Report ITU-R SM.2256. Geneva: ITU, 2012
- [15] 中华人民共和国工业和信息化部无线电管理局.中华人民共和国无线电频率划分规定.北京:人民邮电出版社,2017:63-85
- [16] Shull C A. Botanical Gazette, 1929, 87: 670
- [17] 王玥, 刘奇, 刘晔, 等. 天文研究与技术, 2020, 17: 522

Detection and Identification Method of Resident Electromagnetic Interference at Radio Observatory Site

CAI Ming-hui^{1,2} LIU Qi^{1,2} WANG Yue^{1,2} SU Xiao-ming^{1,2} DANG Zhen-wei¹ ZHANG Guo-fu¹

(1 Xinjiang Astronomical Observatory, Chinese Academy of Sciences, Urumqi 830011) (2 Xinjiang Key Laboratory of Microwave Technology, Urumqi 830011)

ABSTRACT In order to effectively count the changes of resident electromagnetic interference (EMI) of radio observatory sites and improve the efficiency of real-time electromagnetic environment monitoring, a method for detecting and identifying resident EMI signals based on prior information is proposed. Firstly, through signal-to-noise separation and signal energy estimation, the center frequency, polarization mode, incoming wave direction and other characteristics of permanent large signals such as mobile communi-

cation and terrestrial digital TV are extracted from the historical monitoring data of electromagnetic environment. After analyzing the fading mode of wireless signal propagation channel, the hypothesis of distribution function obeyed by the signal energy model is proposed and verified by K-S test. The K-S test method is used to obtain the distribution law obeyed by the resident signal energy, reasonably set the energy threshold and establish the signal template library. Secondly, according to the signal characteristics in the signal template library, the real-time spectrum data is tested by dual threshold energy detection and signal correlation recognition, so as to improve the accuracy of signal inspection. Finally, the fast statistics of resident signals is realized, which provides an important basis for the formulation of station site interference mitigation strategy.

Key words radio frequency interference, hypothesis testing, signal identification, signal template