doi: 10.15940/j.cnki.0001-5245.2025.01.005

适用于圆锥曲线的统一根数在地月空间目标轨道 预报的应用*

王嘉淳1,2,3 汤靖师1,2,3†

(1 南京大学天文与空间科学学院 南京 210023)
(2 现代天文与天体物理教育部重点实验室 南京 210023)
(3 南京大学空间环境与航天动力学研究所 南京 210023)

摘要 采用传统的椭圆根数描述航天器的运动时,若其轨道从椭圆变化到双曲线,将难以继续计算.为了解决此问题,在椭圆轨道根数等经典根数的基础上加以改进,利用一组适用于任意圆锥曲线的轨道根数来对运动方程积分.该组根数可适用于任意偏心率 $e \ge 0$ 和倾角 $0 \le i < 180^\circ$,仅当 $i = 180^\circ$ 时会出现奇点.给出了其基本的转换公式和摄动运动方程.随后,对地月空间目标进行轨道预报,与使用位置速度的计算结果比较,结果表明该根数的结果有着足够的准确性,并在根数变化不是特别剧烈时,计算效率具有优势.针对根数实际应用中可能出现的e较大的双曲线轨道或者 $i = 180^\circ$ 奇点的问题,给出了设置条件更换状态量、固定积分步长等解决方案,并评估了其适用性.

关键词 天体力学, 地球, 月球, 轨道预报, 方法: 数值 中图分类号: P135; 文献标识码: A

1 引言

随着航天技术的发展,人类对地月空间的探索 和应用愈发深入,在其中飞行的航天器和小天体对 航天活动安全的影响引发人们的关注.在研究相关 问题、描述其轨道时,Kepler根数(a,e,i,Ω,ω,M) 是最常用的轨道根数,这6个根数分别表示椭圆轨 道的半长径、偏心率、倾角、升交点经度、近点角 距和平近点角.但是,Kepler根数也展现出其局限 性,比如其只能适用于椭圆运动、在偏心率e = 0、 倾角 $i = 0^{\circ}$,180°处会出现奇点等.为了解决这些问 题,后人提出了多种其它根数.文献[1]²³中介绍了 无奇点根数,其中第二类无奇点根数表示为:

$$\begin{cases} a, h = \sin\frac{i}{2}\cos\Omega, k = \sin\frac{i}{2}\sin\Omega, \\ \xi = e\cos(\omega + \Omega), \eta = e\sin(\omega + \Omega), \\ \lambda = M + \omega + \Omega. \end{cases}$$
(1)

这组根数对偏心率0 $\leq e < 1$ 和倾角0 $\leq i < 180°$ 都适用,不过当i = 180°时将出现奇点.也有 根数将(1)式中h和k表达式的sin $\frac{i}{2}$ 替换成sini,这 样在相关问题(如根数的偏导数矩阵^[2])中会出现 1/cosi因子,从而增加i = 90°的奇点.

文献[3-4]中介绍了可以消除*i* = 180°奇点的根数,如下所示:

对顺行轨道:

²⁰²³⁻¹²⁻²¹收到原稿, 2024-03-19收到修改稿

^{*}国家自然科学基金项目(12233003)资助

[†]jstang@nju.edu.cn

$$\begin{cases} a , \\ h = e \sin \left(\Omega + \omega\right) , \\ k = e \cos \left(\Omega + \omega\right) , \\ \varphi = \tan \frac{i}{2} \sin \Omega , \\ \psi = \tan \frac{i}{2} \cos \Omega , \\ \lambda = M + \Omega + \omega . \end{cases}$$
(2)

对逆行轨道:

$$\begin{cases} a , \\ h_{\rm r} = e \sin \left(\Omega - \omega \right) , \\ k_{\rm r} = e \cos \left(\Omega - \omega \right) , \\ \varphi_{\rm r} = \cot \frac{i}{2} \sin \Omega , \\ \psi_{\rm r} = \cot \frac{i}{2} \cos \Omega , \\ \lambda_{\rm r} = M - \Omega + \omega . \end{cases}$$
(3)

上述根数在0 $\leq e < 1$ 和0 $\leq i \leq 180°$ 时都适 用. 其虽然有顺行和逆行的区分,实际上并不需要 严格地以i = 90°作为分界,只需保证在数值积分时 避开顺行根数中i = 180°或逆行根数中i = 0°的情 况即可. 针对偏心率 $e \geq 1$ 的情况,文献[5–6]介绍了 以下根数,通过使用圆锥曲线的半通径p代替半长 径a使根数可以适用于所有偏心率:

$$\begin{cases} p, h = \tan \frac{i}{2} \cos \Omega, k = \tan \frac{i}{2} \sin \Omega, \\ \xi = e \cos (\omega + \Omega), \eta = e \sin (\omega + \Omega), \\ L = f + \omega + \Omega. \end{cases}$$
(4)

这里f为真近点角. 这组根数只有当 $i = 180^{\circ}$ 时 会出现奇点. 而若将上述两种根数结合, 如将(2) 式、(3)式中的a换成p, λ 换成L, 即可消除 $i = 180^{\circ}$ 的奇点, 且适用于所有偏心率. 这组根数有着广泛 的应用, 如飞船轨迹设计^[7]、空间态势感知^[8]、清 理太空碎片^[9]等领域的工作均有采用. 除此之外,一些学者使用了如下的向量组 合^[10]:

$$\vec{a} = e\vec{P} \,, \; \vec{b} = e\sqrt{p}\vec{Q} \,, \; \vec{c} = \sqrt{p}\vec{R} \,, \; \vec{g} = (e/\sqrt{p}) \, \vec{Q} \,,$$

其中, \vec{P} 和 \vec{R} 分别为近日点方向和轨道面法向的单位向量, $\vec{Q} = \vec{R} \times \vec{P}$.如文献[11]在研究小行星Icarus (1566)时使用了 \vec{a} 和 \vec{b} , 文献[12]介绍的Milankovitch 根数使用的是偏心率向量 \vec{e} 和角动量向量 \vec{H} (等同于上式的 \vec{a} 和 \vec{c}).选取上述的两个向量组合时只有5个独立变量,因此还需要再取一个变量,一般选取平近点角、真经度或是经过近日点的时间等.

如今地月空间的航天器中,有不少目标的轨道 都较为复杂.在地心历元平赤道中,地月平动点轨 道表现为大椭圆轨道[13-14],部分转移轨道或深空 探测器轨道则表现为双曲线轨道. 2022年3月, 国际 小行星中心(Minor Planet Center, MPC)临时编号 为WE0913A的火箭残骸撞击月面. 该目标在长时 间内以地心大椭圆轨道运行在地月空间,并在轨道 寿命末段成为地心双曲线轨道.本文采用一组针对 圆锥曲线统一定义的根数,针对这类地月空间轨道 类型比较复杂、变化程度较大的目标,分析根数在 描述其轨道运动中的适用性.此外,目前地月空间 的开发和利用进入一个新的"高潮期"(如中国的嫦 娥工程¹、美国的Artemis计划²、中俄合作的国际 月球科研站3等). 可以预见, 未来一段时间内, 地月 空间的目标将会显著增加.这些地月空间目标会和 其他近地目标一起,成为编目预警系统关注的对 象. 然而地月空间目标在相对复杂的力学环境中运 行,除了偏心率超过0.9的大椭圆轨道、双曲线轨道 外,还可能出现WE0913A这样在运行过程中由椭 圆变为双曲线轨道的目标. 这些复杂的轨道限制了 椭圆轨道根数的应用. 虽然直角坐标可以适用各种 类型的轨道,但对于编目目标中占绝大多数的地球 近圆轨道而言,直角坐标的计算效率是不如轨道根 数的[15]. 基于此, 我们在本文中探索适用于各类圆 锥曲线的统一根数对地月空间目标的适用性. 下文 将给出该根数基本的转换公式和摄动运动方程.通

¹http://www.clep.org.cn/n487137/n5989571/index.html.

²https://www.nasa.gov/specials/artemis/.

³https://www.gov.cn/xinwen/2021-04/24/content_5601816.htm.

过对地月空间各种类型的轨道进行外推,并与直角 坐标的计算结果进行对比,在准确性、计算效率等 方面进行数值验证和分析.

2 根数的定义

本文将引入的根数记为 (p,ξ,η,h,k,u) (以下称为统一根数). 它们与Kepler根数的关系为^[5]:

$$\begin{cases} p = h^{*2}/\mu, \\ \xi = e \cos(\Omega + \omega), \\ \eta = e \sin(\Omega + \omega), \\ h = \sin\frac{i}{2}\cos\Omega, \\ k = \sin\frac{i}{2}\sin\Omega, \\ u = \Omega + \omega + f, \end{cases}$$
(5)

其中 h^* 为轨道角动量, $\mu = Gm_e$ 为地心引力常数(G为引力常数, m_e 为地球质量), f为真近点角. p与半长径a的关系根据不同的定义表述有区别, 如文献[1]²³中约定a > 0, 此时在椭圆中 $p = a(1 - e^2)$, 在双曲线中 $p = a(e^2 - 1)$; 在文献[16]中, 对椭圆和双曲线都有 $p = a(1 - e^2)$, 此时在椭圆中a > 0, 在双曲线中a < 0.

之所以要使用该组根数,有以下理由:第一,与 各种椭圆根数相比,该根数使用了半通径p代替半 长径a,回避了平近点角M而采用了真近点角f,因 此在双曲线中也能有统一的定义,避免了a在抛物 线中的奇点等问题,同时也能尽量保留轨道根数 相对于位置速度的优点^[15];第二,该组根数中的 ξ 、 η , h、k定义与第二类无奇点根数相同,和常用 的一组椭圆无奇点根数最大程度保持一致^[1-2],因 此现有的针对椭圆轨道的数值、分析方法的公式 和程序可以最大程度地沿用.同时,采用sin $\frac{i}{2}$ 而不 是sin i,是为了消除前文提到的 $i = 90^{\circ}$ 的奇点.该 组根数存在 $i = 180^{\circ}$ 的奇点,不过卫星型的航天器 一般不会出现 $i = 180^{\circ}$ 的情况^{[1]42}.如果该种情况 无法避免,后文4.3节中将讨论可能的解决方案.

3 统一根数与位置速度的转换和摄 动运动方程

为了计算航天器的空间位置,下文将给出统一 根数(*p*,ξ,η,*h*,*k*,*u*)与历元平赤道地心系下的位置、 速度矢量(*r*,*r*)的转换方法.在研究航天器运动时, 通常还会建立一个以航天器为中心的坐标系,其*x*、 *y、z*轴分别为航天器相对中心天体的径向、运动 的瞬时轨道面的横向和运动平面的法向,而将摄动 加速度在这3个方向的分量的大小称为*S、T、W* (如图1所示).

图 1 摄动加速度在径向、横向和轨道面法向分解为S、T、W分量的示意图

Fig. 1 A schematic diagram of the perturbation acceleration decomposed into radial (S), tangent (T), and normal-to-orbital-plane (W) components

3.1 根数转化成位置速度

首先可由下式求出径向和横向的单位矢量*r*、 *t*:

$$\begin{cases} \hat{r} = \cos u \hat{P}^* + \sin u \hat{Q}^* ,\\ \hat{t} = -\sin u \hat{P}^* + \cos u \hat{Q}^* , \end{cases}$$
(6)

其中Ŷ*、Ŷ*的求法如下:

$$\hat{P}^* = \begin{pmatrix} 1-2k^2\\ 2hk\\ -2k\cos\frac{i}{2} \end{pmatrix}, \quad \hat{Q}^* = \begin{pmatrix} 2hk\\ 1-2h^2\\ 2h\cos\frac{i}{2} \end{pmatrix},$$
(7)

$$\cos\frac{i}{2} = \sqrt{1 - h^2 - k^2} \,. \tag{8}$$

(dm

根据圆锥曲线轨道积分易得位置标量r,于是 位置矢量r^{*}和速度矢量r^{*}可由下列公式计算:

$$\vec{r} = r\hat{r} = \frac{p}{1+\xi\cos u + \eta\sin u}\hat{r},\qquad(9)$$

$$\dot{\vec{r}} = \sqrt{\frac{\mu}{p}} \left(\xi \cos u - \eta \sin u\right) \hat{r} + \frac{\sqrt{\mu p}}{r} \hat{t} \,. \tag{10}$$

3.2 位置速度转化成根数

首先利用位置和速度矢量求出角动量向量*Ĥ* 及它的模*h**:

$$\vec{H} = \vec{r} \times \dot{\vec{r}} = h^* \begin{pmatrix} 2k \cos \frac{i}{2} \\ -2h \cos \frac{i}{2} \\ 1 - 2(h^2 + k^2) \end{pmatrix}$$
$$= h^* \begin{pmatrix} H_x \\ H_y \\ H_z \end{pmatrix}, \quad h^* = \left| \vec{H} \right|. \tag{11}$$

于是可由 $p = h^{*2}/\mu$ 立刻求出p. 随后根据(11) 式中 \vec{H} 分量的表达式可求出h和k. 将(7)式 \hat{P}^{*} 和 \hat{Q}^{*} 的 表达式代入(6)式 \hat{r} 的表达式后可由分量解出cosu和sinu,从而求出u. 另一方面,将(10)式整理后, 有:

$$\dot{\vec{r}} - \frac{\sqrt{\mu p}}{r}\hat{t} = e\sin f \cdot \sqrt{\frac{\mu}{p}}\hat{r}.$$
 (12)

从方程(12)的任意分量即可求出 $e \sin f$.又由 圆锥曲线轨道积分有 $e \cos f = \frac{p}{r} - 1$,则 $e \sin f \pi e \cos f$ 的值都已知.代入下式

$$\begin{cases} e\cos f = \xi\cos u + \eta\sin u, \\ e\sin f = \xi\cos u - \eta\sin u, \end{cases}$$
(13)

即能解出 ξ 和 η . 至此已求出 (p,ξ,η,h,k,u) 全部6个 根数.

3.3 摄动运动方程

该统一根数的高斯(Gauss)型摄动运动方程可 由文献[1]⁶⁸⁻⁷⁰中的摄动方程根据链式法则得出:

$$\begin{cases} \frac{\mathrm{d}p}{\mathrm{d}t} = 2\sqrt{\frac{p}{\mu}}rT, \\ \frac{\mathrm{d}\xi}{\mathrm{d}t} = \sqrt{\frac{p}{\mu}}\left\{\sin uS + \left[\cos u + \frac{r}{p}(\cos u + \xi)\right]T - \eta DW\right\}, \\ \frac{\mathrm{d}\eta}{\mathrm{d}t} = \sqrt{\frac{p}{\mu}}\left\{-\cos uS + \left[\sin u + \frac{r}{p}(\sin u + \eta)\right]T + \xi DW\right\}, \\ \frac{\mathrm{d}h}{\mathrm{d}t} = \frac{r}{2\sqrt{\mu p}\cos(i/2)} \times \left[\cos u - h(k\sin u + h\cos u)\right]W, \\ \frac{\mathrm{d}k}{\mathrm{d}t} = \frac{r}{2\sqrt{\mu p}\cos(i/2)} \times \left[\sin u - h(k\sin u + h\cos u)\right]W, \\ \frac{\mathrm{d}u}{\mathrm{d}t} = \frac{\sqrt{\mu p}}{r^2}\left(1 + \frac{r^2}{\mu}DW\right) = \frac{\sqrt{\mu p}}{r^2} + \sqrt{\frac{p}{\mu}}DW, \end{cases}$$
(14)

其中

$$D \equiv \left(\frac{r}{p}\right) \frac{h \sin u - k \cos u}{\cos \left(i/2\right)} \,. \tag{15}$$

设摄动加速度为 \vec{F}_{ε} ,方程中摄动加速度的3个分量S、T、W可由下式求得:

$$S = \vec{F}_{\varepsilon} \cdot \hat{r} , \ T = \vec{F}_{\varepsilon} \cdot \hat{t} , \ W = \vec{F}_{\varepsilon} \cdot \hat{w} , \qquad (16)$$

其中, \hat{r} 、 \hat{t} 、 \hat{w} 分别为径向、横向、法向的单位向 量, \hat{r} 和 \hat{t} 的求法见(6)式, $\hat{w} = \hat{r} \times \hat{t}$.

显然, (14)式和(15)式对任意偏心率e ($e \ge 0$) 和倾角i ($0 \le i < 180^{\circ}$)都没有奇点. 当i接近180° 时,该组根数会出现奇点,解决方案会在后文4.3节 中讨论.

4 数值验证及分析

下文的计算中为了方便, 会使用归一化单位, 长度单位[*L*]、质量单位[*M*]和时间单位[*T*]的取法 如下所示:

$$[L] = a_{\rm e}, \ [M] = m_{\rm e}, \ [T] = \sqrt{a_{\rm e}^3/Gm_{\rm e}}, \quad (17)$$

其中, a_e为地球参考椭球半径, m_e为地球质量.

下面会选取地月空间一些不同类型轨道的实际或仿真目标,通过对这些目标进行轨道预报并与 直角坐标的计算结果相比,分析统一根数在轨道预 报方面的计算效率和精度.

4.1 绕地椭圆轨道目标的算例

首先选取的是实际环绕地球运动的目标. 轨 道根数在近地目标轨道预报中的效率优势已有结 论^[15].为了尽量体现本文选取的统一根数在地月 空间目标中的适用性,本节从2023年10月初spacetrack发布的TLE (Two Line Elements)数据中,选 取半长径最大的3个目标,初始Kepler根数如表1 所示.客观上讲,很多地月空间目标(包括下一节的 平动点轨道)都处于地心椭圆轨道.但为了方便称 呼,本文将TLE编目目标中的这3个目标称为"绕地 椭圆轨道".分别用统一根数与位置速度矢量进行 数值计算,比较其星历.摄动力考虑10阶次地球及 月球非球形引力、太阳质点引力、太阳光压.计算 时使用定步长的RKF7 (8)阶积分器(Runge-Kutta-Fehlberg),步长为1 h,总时长100 d.目标的飞行轨 迹如图2所示,图3展示了其月心距和地心距,图4展 示了积分过程中用两种方法所得星历位置偏差的 变化.可见在此情况下预报100 d的轨道,根数与坐 标星历的差别最大达到毫米级,表明用统一根数进 行轨道预报时有着很高的精确度.

表 1 初始Kepler根数 Table 1 Initial Kepler elements **NORAD**^a Name MJD^{b} a_0/km $i_0/^\circ$ $\Omega_0/^\circ$ $\omega_0/^\circ$ $M_0/^\circ$ e_0 ID 47097 60189.60450271 351095.8838 0.36923016 29.70014288 Chang'e-5 4.1759317237.776945 118.6684837 43435 TESS 60220.57050067 235122.5056 0.49022987 42.75804452 72.26082968 154.9777321 3.29961695 SPEKTR-R^d60219.61989202 195660.3342 0.6008961 46.22243136 107.2504508 219.9365116 357.5358842 37755

^a North American Aerospace Defense Command;

^b Modified Julian Day;

^c Transiting Exoplanet Survey Satellite;

^d In Russian: Спектр-Р, also known as Radioastron.

Fig. 2 The trajectory of Chang'e-5, TESS and SPEKTR-R

Fig. 3 Selenocentric and geocentric distance of Chang'e-5, TESS and SPEKTR-R

Fig. 4 The position deviation of the ephemerides of Chang'e-5, TESS and SPEKTR-R

在计算效率方面,对上述目标用变步长的RKF7 (8)阶积分器进行100 d的轨道预报.初值和力模型 不变,误差容限取为1×10⁻¹⁴ (归一化单位).图5展 示了使用根数和坐标积分时,右函数计算次数的变 化情况.在这几个算例中,根数与坐标积分的右函 数计算次数的增长幅度比较平稳,且根数在计算效 率上具有优势.图5 (a)中根数积分的速度优势没 有图5 (b)和图5 (c)明显,是因为Chang'e-5的根数 变化较剧烈,使用根数积分时运动方程的加速度较 大,因而步长较小.总的来说,这组算例说明对于绕 地椭圆轨道目标,即使距离较远、偏心率较大,轨 道根数相较直角坐标仍具有效率优势,和常规的地 球卫星轨道类似. 为了保证对各类圆锥曲线的适用性, 统一根数 使用真近点角f定义目标的位置, 因此对于大椭圆 轨道, 在近地点附近积分速度会受到步长的限制. 与经典的椭圆根数(基于平近点角M定义的Kepler 根数或无奇点根数)相比, 算例中Chang'e-5 ($e_0 \approx$ 0.37)使用统一根数的效率较高, 而TESS ($e_0 \approx$ 0.49)和SPEKTR-R ($e_0 \approx$ 0.60)使用经典椭圆根 数的效率较高.

4.2 地月平动点目标的算例

该算例中选用目标在GCRS (Geocentric Celestial Reference System)下的初始位置、速度($\vec{r_0} = (x_0, y_0, x_0)^{\mathrm{T}}, \dot{\vec{r_0}} = (\dot{x}_0, \dot{y}_0, \dot{z}_0)^{\mathrm{T}}$)如表2所示, 初始历

元为世界时2028年1月1日0时0分0.0秒.该目标位于 地月Lagrange点 L_1 点附近的Lissajous轨道上,在初 始历元后的约20 d内能围绕L₁点运动, 之后便会逐 渐偏离平衡位置.

Fig. 5 Number of calculations of Chang'e-5, TESS and SPEKTR-R

表 2 目标的初始位置和速度 Table 2 Initial position and velocity of the object

Component	Value	
x_0/km	287301.306497969664633	
$y_0/{ m km}$	-188133.066372667293763	
$z_0/{ m km}$	-62893.610615908612090	
$\dot{x}_0/(\mathrm{m}\cdot\mathrm{s}^{-1})$	419.999194881878964	
$\dot{y}_0/(\mathrm{m}\cdot\mathrm{s}^{-1})$	34.745345526447295	
$\dot{z}_0/(\mathrm{m}\cdot\mathrm{s}^{-1})$	309.170459778797806	

分别用统一根数与位置速度矢量进行数值计 算,比较其星历. 摄动力考虑10阶次地球及月球 非球形引力、太阳质点引力、太阳光压. 计算时 使用定步长的RKF7 (8)阶积分器,步长15 s、总时 长50 d. 期间目标的轨迹如图6 (a)所示,图6 (b)、 图7分别展示了目标的月心距和偏心率、倾角的 变化. 根数与坐标星历的差别如图8所示,在50 d的 轨道预报中星历的位置偏差在10⁻³ km量级. 在前 20多天,地球二体引力为主导因素. 而在约21 d后, 该目标在没有轨控保持的情况下,离开L1点附近在 地月空间做大范围运动,此时月球质点引力超过了 地球引力. 所以图8中L1点目标的星历偏差变化是 积分过程中运动方程加速度变化的体现,这和地月 空间中主导作用因素的变化以及不同状态量自身 的变化特性有关.

以下比较统一根数与坐标的计算效率,使用变 步长的RKF7 (8)阶积分器,误差容限设为1×10⁻¹², 积分50 d. 图9展示了使用根数和坐标积分时右函 数计算次数的累计情况. 在最初的约20 d中根数的 计算效率仍有优势,而在20多天偏离平衡点后,根 数的计算次数会经历几次短时间内的大幅增加并 在计算效率上落后于坐标.结合图7可以分析根数 计算效率下降的原因. 在积分到22 d及44 d左右时, 该目标的偏心率迅速从小于1增长到超过3, 根据 在第2节给出的关系,圆锥曲线的半长轴a变化不 大的情况下,此时p将会增大约一个量级,而在(14) 式中,运动方程的右端含有、/p因子,当p增大时加 速度也会增大,从而导致此时步长缩短、右函数计 算次数增加.在积分到30 d及35 d左右时,该目标的 轨道倾角突然增大,此时目标短时间内接近逆行状 态, (14)式中运动方程的1/cos(i/2)因子的分母变 小,也会使加速度增大、计算效率下降.

总体来说,当目标处于椭圆轨道时,根数的计 算效率相对坐标仍有优势,这也与4.1节中的结论 相符.但是当目标位于双曲线轨道时,根数的计算 效率就会下降甚至落后于坐标.这类轨道一般都距 离地球较远,虽然仍可将它看做地心的双曲线轨 道,但此时根数的变化比较剧烈,导致步长缩小,计 算效率随即下降.

图 6 目标的轨迹和月心距

图 7 目标的倾角和偏心率

Fig. 9 Number of acceleration calculations using unified elements and Cartesian

5 - 8

4.3 撞月目标的算例

目标WE0913A在世界时2022年1月20日23时 58分50.816000秒的Kepler根数如表3所示⁴. 在经 历40多天的飞行后撞上了月球. 将对直角坐标积 分得到的星历看作参考,其飞行过程中的轨迹和月 心距、轨道倾角和偏心率分别如图10、图11所示. 其中,图11 (a)中的小图框为积分末段图像的局部 放大. 可见其偏心率从小于1变化到大于1, 表明其 轨道最初为椭圆轨道,在接近月球时变成双曲线轨 道,因此用椭圆根数难以计算,另外,在接近撞月, 即接近积分的最后时刻, 根数会经历剧烈的突变, 其中倾角i会增长到接近180°,这是统一根数的奇 点. 接近奇点时小分母的出现客观上会使得右函数 出现突变,数值积分很难跨过这一奇点,体现为步 长不断缩小至无法继续推进. 放宽局部截断误差是 跨过奇点的可选方案之一,但代价是积分误差的增 大,并且同样会面临步长显著缩小的问题.积分中 奇点的应对将在下一节详细讨论. 以下将使用统一 根数计算该航天器从起始时刻到撞月的星历并与 位置速度计算所得结果比较.

4.3.1 星历的比较

图12展示了统一根数与位置速度计算目标

星历的位置误差随积分时间变化的情况. 计 算时, 摄动力考虑10阶次地球及月球非球形引 力、太阳质点引力、太阳光压. 为了方便比较 星历, 当月心距大于10000 km时, 输出星历间隔 为30 min; 当月心距小于10000 km时, 星历间隔 为1 s. 在此算例中没有严格地考虑月球表面的 形状, 当月心距小于月球半径1737.1 km时, 即判 定为撞月. 截断误差的容限设为1 × 10⁻¹⁰ (归一 化单位). 此时两种方法算出的撞月时间都为世界 时2022年3月4日12时29分31.816秒.

表 3 目标的初始Kepler根数 Table 3 _ Initial Kepler elements of the object

Parameter	Value	
$a_0/{ m m}$	295935583.079336	
e_0	0.8898470995	
$i_0/^\circ$	$i_0/^{\circ}$ 27.00950568 $\Omega_0/^{\circ}$ 17.81969120	
$\Omega_0/^\circ$		
$\omega_0/^\circ$	149.23250975	
$M_0/^\circ$	$M_0/^{\circ}$ 0.16220037	

Fig. 10 The trajectory and selenocentric distance of WE0913A

⁴数据来自https://www.projectpluto.com/pluto/mpecs/dscovr2.htm (2022年1月访问).本文仅分析不同状态量对该目标轨道预报的影响,具体结果可能和更新初值后的预报结果有差异.

Fig. 11 The inclination and eccentricity of WE0913A

结合图10 (b)中月心距的变化,可推断图12中 出现的尖峰是因为此时离月球比较近,月球的摄动 力较大导致星历的差别较大.同时,经过约42.5 d的 轨道预报,统一根数和位置速度的误差最大在米 级,根数的计算结果与位置、速度一致.

图 12 统一根数与位置速度计算WE0913A星历的位置偏差

4.3.2 计算的效率

为了比较计算效率,使用变步长的RKF7 (8) 积分器,直接积分到特定的时刻,误差容限取为1 × 10⁻¹⁰.分别用统一根数与位置速度从初始时刻开 始积分不同时长,并对积分过程中的右函数计算次 数进行计数,其结果列于表4,并由表4绘制出图13.

	表 4 右函数计算次数
Table 4	Number of right function calculations

Duration/d	Unified elements	Cartesian
5	273	559
10	299	637
15	442	845
20	1274	1794
25	1365	1963
30	1391	2067
35	1404	2093
40	1508	2210
41	1547	2262
42	1651	2314
$42.5162^{\rm a}$	2159154	3184

 $^{\rm a}$ Time when WE0913A impacted the moon

可见, 在靠前的绝大部分积分时段中, 根数的 计算效率仍占优势, 而若计算到撞月, 根数的计算 效率就会大幅下降. 事实上, 由图11 (a)可知, 在接 近月球的最后时段, 倾角*i*会接近180°, 这是统一根 数的奇点. 此时摄动方程中的cos(*i*/2)会成为小分 母, 导致其加速度的值变得非常大, 而为了满足误 差容限, 步长必须缩得非常小, 于是计算效率就会 下降. 表5统计了使用根数积分的过程中, 倾角*i*在 不同范围内时(即对不同的*i**, *i* > *i**时), 计算右函 66 卷

数的次数.可见当i接近奇点时花费的计算次数占 全过程的绝大部分,因此奇点是计算效率下降的主 要原因.

Fig. 13 Number of right function calculations using unified elements or Cartesian under different integration durations

表 5	不同轨道倾角范围下的右函数计算次数
Table 5	Number of calculations in different

orbital inclination ranges			
Number of		Number of	
$i^*/^\circ$	calculations	calculations	
when $i > i^*$		when $i \leq i^*$	
160	2154280	4874	
165	2153500	5654	
170	2150304	8850	
175	2143479	15675	
179	1625897	533257	

为了改善在用统一根数的变步长积分中在接 近奇点时计算效率下降的问题,同时又不会显著 影响计算精度,可以采用如下的方案来回避奇点: 监测步长的变化,当达到某个阈值时,选用下面 的某一策略:(1)变为定步长积分;(2)限制最小步 长;(3)改用坐标为状态量.在表6中,将给出多种改 进的计算方法的右函数计算次数、撞月时刻的差 别和月固系中撞月点的差距.具体的实施方法如 下(下述算例中,将精度最高的坐标积分结果(1)作 为对照组.TOL表示变步长积分的误差容限,单位 为归一化单位):

(1)全程使用坐标变步长积分(TOL = 1 × 10⁻¹⁴);

(2)全程使用坐标变步长积分(TOL = 1× 10⁻¹⁰);

(3)全程使用根数变步长积分(TOL = 1× 10⁻¹⁰);

(4)起始和(3)相同,当步长< 0.01 s后改为 0.01 s的定步长积分;

(5)起始和(3)相同,当步长< 0.05 s后改为 0.05 s的定步长积分;

(6)起始和(3)相同,当步长< 0.07 s后改为 0.07 s的定步长积分;

(7)起始和(3)相同,但限制步长最小不小于
 0.01 s (当根据TOL变化步长时,若步长小于0.01 s
 则将步长改为0.01 s,大于时仍按实际步长计算);

(8)起始和(3)相同,但限制步长最小不小于 0.05 s (做法同(7));

(9)起始和(3)相同,但限制步长最小不小于 0.07 s (做法同(7));

(10)起始和(3)相同, 当步长< 0.01 s后改用坐 标变步长积分(TOL不变);

(11)起始和(3)相同, 当步长< 0.05 s后改用坐 标变步长积分(TOL不变).

在表6中, (4)-(11)的策略虽有差别, 但相对于 全程使用根数的(3), 计算效率都有极大改善. 同时, 除了(6)和(9), 与高精度的位置速度计算结果(1)相 比, 撞月时刻的差别在10⁻² s量级, 撞月点的差距 最大在10⁻¹ km量级, 依然保持着比较高的精度. 因 此, 上述改善计算效率的方式是可行的. 在(6)和(9) 中, 步长已被放宽到0.07 s, 此时的撞月时刻的差别 约为1 s, 撞月点的差别达到了5 km, 与其他算例相 比精度下降明显. 因此用上述方法提升计算效率 时, 也不能过分放大步长的阈值, 否则计算精度将 遭受较大的损失. 在正常情况下, 通过局部截断误 差控制积分步长应是最稳定、可靠的办法. 总体来 说, *i* = 180°奇点对根数的限制是客观存在且不可 忽视的, 但在适当放宽计算精度的情况下可以获得 较为明显的效率提升.

abig	Die o Emclency and accuracy of tests using unterent computing			cht computing strateg
Tost ID		Number of acceleration	Deviation of	Distance between
	Test ID	calculations	impact time $^{\rm a}/{\rm s}$	impact $points^b/km$
	(1)	11145	0^{c}	0^{d}
	(2)	3184	-0.0092	0.0116
	(3)	2159154	0.0476	0.0612
	(4)	330029	0.0503	0.0725
	(5)	85291	0.0236	0.2212
	(6)	63811	-1.0315	5.0319
	(7)	83058	0.0572	0.0688
	(8)	41856	0.0642	0.1901
	(9)	40470	-0.9965	5.0181
	(10)	18933	0.0492	0.0606
	(11)	11613	0.0492	0.0606

表 6 使用不同计算策略进行测试的效率和精度

Table 6 Efficiency and accuracy of tests using different computing strategies

^{a, b} Compared with the result of (1).

 $^{\rm c}$ The impact time is 2022-03-04 UTC 12:29:32.5400.

^d The impact location is at 135.5592°W, 3.5085°N.

5 结论

针对适用于多种圆锥曲线轨道的统一根数进 行了推导,给出了该组根数与位置、速度矢量的转 换方法和摄动运动方程.在与坐标计算星历的比较 中,对绕地椭圆轨道目标以1h为步长积分100d,差 距在毫米量级,基本达到了局部截断误差和舍入误 差的极限;对地月平动点目标,在50d的轨道预报 中根数与坐标星历的差距最大在10⁻²km量级;对 撞月目标,星历差距最大在米级,用多种方式计算 的撞月时刻的差别在10⁻²s量级,撞月点的差距最 大在10⁻¹km量级.数值计算验证了根数计算结果 的可靠性.同时与位置速度相比,统一根数在偏心 率不太大、不临近奇点时具有更高的计算效率.

对于接近奇点时统一根数变步长积分计算效 率下降的问题,尝试定步长积分、限制最小步长或 改用坐标等解决方法,验证了其可行性.针对撞月 目标改进计算策略后,与全程用根数变步长积分相 比,在不明显影响精度的前提下,右函数计算次数 减少了两个量级.在这些策略中,通过局部截断误 差控制积分步长是一般情况下最稳定、可靠的办法.这一改进使得统一根数即使在遇到*i* = 180°奇 点时也具备可用性,因此对于地月空间目标,统一 根数对于各种类型轨道均可适用,并且在绝大多数 场景中(如*e* < 3且*i* ≠ 180°)相对坐标具有比较明显 的计算效率优势.

参考文献

- [1] 刘林, 胡松杰, 王歆. 航天动力学引论. 南京: 南京大学出版社, 2006
- [2] 刘林. 航天器轨道理论. 北京: 国防工业出版社, 2000: 439
- [3] Cefola P J. Equinoctial Orbit Elements-Application to Artificial Satellite Orbits, AIAA 1972-937. Astrodynamics Conference. Palo Alto, CA, U.S.A., September 11-12, 1972
- [4] McClain W D. NASA-CR-156782. A Recursively Formulated First-order Semianalytic Artificial Satellite Theory Based on the Generalized Method of Averaging. Volume 1: The Generalized Method of Averaging Applied to the Artificial Satellite Problem, 1977: A-1
- [5] Walker M J H, Ireland B, Owens J. CeMec, 1985, 36: 409
- [6] Walker M J H. CeMec, 1986, 38: 391

- [7] Peloni A, Ceriotti M, Dachwald B. JGCD, 2016, 39: 2712
- $[8]\,$ Horwood J T, Poore A B. SIAM/ASA, 2014, 2: 276
- [9]~ Qi R, Misra A K, Zuo Z. JGCD, 2017, 40: 722
- $\left[10\right]~{\rm Roy}$ A E, Moran P E. Ce
Mec, 1973, 7: 236
- [11] Herrick S. AJ, 1953, 58: 156
- $\left[12\right]$ Rosengren A
 J, Scheeres D J. CeMDA, 2014, 118: 197
- [13] 刘林, 汤靖师, 侯锡云. 天文学报, 2018, 59: 29

- [14] Liu L, Tang J, Hou X. ChA&A, 2019, 43: 278
- [15] 王海红.人造地球卫星精密定轨综合研究及应用.南京:南京大 学,2007:15
- [16] Vallado D A. Fundamentals of Astrodynamics and Applications. Fourth Edition. Hawthorne, CA: Microcosm Press, 2013

The Application of Unified Orbital Elements for Conic Orbits in Cislunar Orbit Prediction

WANG Jia-chun^{1,2,3} TANG Jing-shi^{1,2,3}

(1 School of Astronomy and Space Science, Nanjing University, Nanjing 210023) (2 Key Laboratory of Astronomy and Astrophysics, Ministry of Education, Nanjing 210023) (3 Institute of Space Environment and Astrodynamics, Nanjing University, Nanjing 210023)

ABSTRACT When describing the motion of a spacecraft using traditional elliptical orbital elements, if its orbit changes from elliptical to hyperbolic, it becomes difficult to continue the calculation. In order to address this issue, improvements are made upon classical elliptical orbital elements, utilizing a set of orbital elements applicable to any conic section to integrate the equation of motion. The set of elements is applicable for any eccentricity $e \ge 0$ and inclination $0 \le i < 180^{\circ}$, with the singularity occurring only for $i = 180^{\circ}$. The basic conversion formulas and equations of perturbed motion are provided. Subsequently, orbit predictions for cislunar objects are conducted, and the results are compared with calculations using Cartesian. The findings indicate that the results obtained from these orbital elements are sufficiently accurate, and the computational efficiency is advantageous when the changes in the elements are not particularly drastic. In addressing the issue of the singularity at $i = 180^{\circ}$ that may arise in the practical application of orbital elements, various workarounds are proposed, including changing state variables and fixing integration step sizes, and their applicability is assessed.

Key words celestial mechanics, Earth, Moon, orbit prediction, methods: numerical