doi: 10.15940/j.cnki.0001-5245.2025.04.003

慧眼-HXMT前六年在轨本底回顾*

廖进元节

(中国科学院高能物理研究所 北京 100049)

摘要 回顾了慧眼-硬X射线调制望远镜(Insight-Hard X-ray Modulation Telescope, 简称慧眼-HXMT)在 轨运行前6 yr的本底情况,包含各载荷在轨本底的地理分布、能谱和时变特征以及长期演化.除此之外,还对 慧眼-HXMT各载荷在轨本底的估计方法进行了回顾,综合介绍了各载荷的本底模型以及本底估计的精度.从总体上看, 慧眼-HXMT的在轨本底符合预期,各载荷本底模型能够对在轨本底的能谱和光变进行可靠的估计.

关键词 航天器: 仪器, 方法: 数据分析, X射线: 本底中图分类号: P111; 文献标识码: A

1 引言

慧眼-HXMT (Insight-Hard X-ray Modulation Telescope)是中国第1颗通用型空间X射线望远镜,从2017年6月15日发射至今,在X射线天文领域取得了丰硕的成果[1].其上搭载了3个主要载荷,分别是低能望远镜(Low Energy telescope, LE)[2]、中能望远镜(Medium Energy telescope, ME)[3]以及高能望远镜(High Energy telescope, HE)[4].3个主载荷的协同使用,使得慧眼-HXMT具有宽能段、大有效面积和高时间分辨的特点.慧眼-HXMT的主要性能参数列于表1.

慧眼-HXMT的大部分科学成果源自对河内X射线源的定点观测任务^[5-6]. 在这些观测中, 慧眼-HXMT获得的数据里同时包含X射线源的物理信号和不同比例的本底信号. 为了获得可靠的物理分析结果, 本底的准确估计就显得尤为重要. 除河内已知X射线源的定点观测之外, 慧眼-HXMT还具有两大主要任务, 分别是银道面扫描巡天和γ射

线暴全天监测. 这两个任务具有不同观测策略, 因 此也就有不同的本底特征以及本底估计方法. 对 于 γ 射线暴全天监测,采用暴前和暴后观测平均的 方式进行本底估计[7]; 对于银道面扫描巡天, 本底 信号则采用将源的调制信号扣除后进行平滑的方 法进行估计^[8]. 相较于银道面扫描巡天和γ射线暴 全天监测, 慧眼-HXMT定点观测的本底估计要复 杂很多. 由于慧眼-HXMT是准直型望远镜, 不仅 没有聚焦成像型望远镜那样直接从图像中得到准确 本底的能力, 例如, 牛顿多镜面X射线空间望远镜 (X-ray Multi-Mirror Mission, XMM-Newton)[9-10] 和钱德拉X射线天文台(Chandra X-ray Observatory)[11], 也没有像其他一些准直型望远镜那样采 用传统的on-off观测模式, 例如, BeppoSAX/PDS (Satellite per Astronomia X/Phoswich Detection System)[12-13]和RXTE/HEXTE (Rossi X-ray Timing Explorer/High Energy X-ray Timing Experiment)[14-16], 因此慧眼-HXMT需要针对其自身特点 去构建定点观测中的本底估计方法. 为了更加准

2024-10-11收到原稿, 2025-01-02收到修改稿

^{*}国家自然科学基金项目(12333007)、国家重点研发计划(2021YFA0718500)、中国科学院国际合作项目(113111KYSB20190020)资助

[†]liaojinyuan@ihep.ac.cn

确地对本底进行估计, 慧眼-HXMT基于其自身的特点构建了本底模型^[17-19].

表 1 低能望远镜、中能望远镜以及高能望远镜的 主要载荷参数

Table 1 Main instrumental parameters of LE, ME and HE

	LE	ME	$_{ m HE}$
Detector type	Swept Charge Device	Si-PIN	Phoswich
Energy range $/\mathrm{keV}$	0.7 – 13	5-40	20-250
$\begin{array}{c} \text{Geometrical} \\ \text{area/cm}^2 \end{array}$	384	952	5096
Small FoV (FWHM)	$1.6^{\circ} \times 6^{\circ}$	$1^{\circ} \times 4^{\circ}$	$1.1^{\circ} \times 5.7^{\circ}$
Large FoV (FWHM)	$4^{\circ} \times 6^{\circ}$	$4^{\circ} \times 4^{\circ}$	$5.7^{\circ} \times 5.7^{\circ}$

慧眼-HXMT运行在一个轨道高度550 km, 倾角43°的近地圆轨道上. 先前的工作表明^[17-22], 慧眼-HXMT运行轨道上的空间环境复杂, 各种粒子与卫星平台以及载荷仪器相互作用产生多种本底成分^[23-24]. 其中, 宇宙线质子对慧眼-HXMT的本底贡献最大, 而电子、中子、宇宙X射线本底(Cosmic X-ray Background, CXB)以及地球反照γ射线也

对本底有所贡献. 慧眼-HXMT在其顶部安装有粒子监测器(Particle Monitor, PM),可用来探测环境中的质子(能量E>20 MeV)和电子(E>1.5 MeV)[25]. 在轨运行前6 yr, PM计数率的地理分布变化很小,不论是低纬度地区、高纬度地区,还是南大西洋异常区(South Atlantic Anomaly, SAA). 但2022年以来,由于太阳活动的增强导致大气密度增加, PM计数率整体有所下降. 我们在慧眼-HXMT本底中观察到一些长期的变化,然而这不仅是太阳活动周期的原因,在很大程度上与LE和ME探测器的辐照损伤以及HE遭受荷电粒子轰击的活化效应有关. 因此,当我们回顾慧眼-HXMT的本底时,既要关注其观测特征的演化,还要考察本底模型的有效性.

本文综合回顾了慧眼-HXMT在轨运行前6 yr的本底情况. 将利用高银纬的空天区观测考察前6 yr内慧眼-HXMT 3个主要有效载荷的在轨本底,包括各载荷的在轨本底观测特征和本底模型的系统误差分析. 表2展示了这些空天区观测的具体信息. 值得注意的是,慧眼-HXMT的3个望远镜都有不同大小和方向的视场(FoVs). 图1和表1展示了这些视场的方位和参数信息. 对于LE和ME的定点观测,推荐使用小视场探测器进行科学分析. 因此,本文将LE和ME的观测特征和本底模型主要集中在这些探测器上. 本文的组织结构如下: 在第2-4节分别介绍LE、ME和HE的本底,总结和结论则在第5节进行.

表 2 慧眼-HXMT前6 yr的本底观测信息 Table 2 Observation of *Insight*-HXMT background in six years

ObsID	Duration	$\mathrm{Target}^{\mathrm{a}}$
P0101293 (001–191)	2017-11-02 to 2019-06-26	Blank Sky
P0202041 (001–161)	2019-07-10 to 2020-07-22	Blank Sky
P0301293 (001–115)	2020 - 08 - 06 to 2021 - 08 - 30	Blank Sky
P0401293 (001–115)	2021-09-14 to 2022-08-29	Blank Sky
P0501293 (001–103)	2022-09-28 to 2023-08-14	Blank Sky
P0101297 (201–217)	2017-09-13 to 2018-09-14	PSR B0540-69
P0101322 (001-001)	2017-07-19 to 2017-07-23	PSR B0540-69
P0114550 (001–003)	2017-09-20 to 2017-09-27	GW 170817

ObsID	Duration	Target ^a
P0101326 (001–018)	2017-07-08 to 2019-02-19	Cas A
P0202041 (200–208)	2019-07-13 to 2020-07-29	Cas A
P0302291 (001–020)	2020-08-23 to $2021-08-21$	Cas A
P0402348 (001–015)	2021-09-17 to $2022-08-19$	Cas A
P0502131 (001–022)	2022-09-22 to 2023-08-17	Cas A

表2 续 Table 2 Continued

^a The observations of the blank sky are used as background observations for LE, ME, and HE. The observations of PSR B0540–69, GW 170817, and Cas A are only used for background analysis in HE (as the sources are very weak for HE and can be considered as 'blank sky').

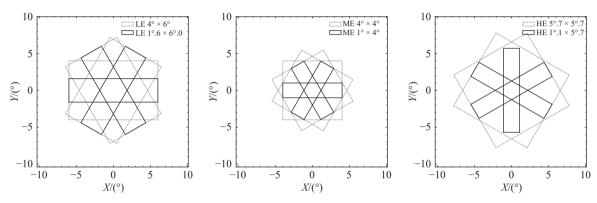


图 1 低能望远镜、中能望远镜以及高能望远镜的视场

Fig. 1 FoVs of LE, ME and HE

2 低能X射线望远镜

LE由一系列SCD (Swept Charge Device)探测器组成,几何面积为384 cm²,探测能段为0.7–13 keV. LE有3个望远镜机箱,相互之间的视场方向差是60°.每个机箱包含20个小视场探测器(其中一些是相继损坏的)、6个大视场探测器以及2个全遮挡探测器(准直器被铝盖封住).被封住的小视场探测器设计用于测量粒子本底,而被封住的大视场探测器设计用于测量粒子本底,而被封住的大视场探测器植入了55Fe放射性同位素以监测能量响应.在慧眼-HXMT前6 yr的运行中,一些LE探测器已经损坏并被关闭. LE坏探测器的详细信息可以从慧眼-HXMT数据分析软件中包含的"坏探测器FITS文件"中获得.图2展示了一个空天区的LE光

变曲线,显示出LE本底的典型轮廓以及一系列典型特征.整个时间范围可以分为仪器的异常和正常阶段.在异常阶段,由于相对较大的视场,LE通常受到大量低能荷电粒子和可见光的干扰,这些粒子从准直器进入并难以准确估计.在严重情况下,LE探测器将因在轨存储溢出而饱和.仪器的正常阶段可以分为3种类型.首先是地球遮挡的时间间隔,在这段时间内,具有不同视场探测器的光变曲线重合,并且没有记录到任何CXB光子.其次是"计数暴发"时间段,小视场和大视场探测器都可以检测到"计数暴发".此外,"计数暴发"通量基本上与视场大小成正比.最后,既没有地球遮挡又没有"计数暴发"的时间段被视为好时间(Good Time Interval, GTI),而通常的科学分析只使用GTI数

据. 为了准确估计本底, 本底分析软件不仅要进行常规GTI判断, 还要进行小视场和大视场探测器计

数率的比较^[17]. 下面将展示LE本底的观测特征以 及前6 yr内本底模型的有效性.

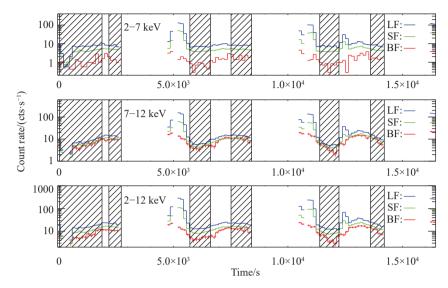


图 2 LE大视场(blue)、小视场(green)以及全遮挡探测器(red)在不同能段的光变曲线(观测号: P050129303501). 好时间被标记为阴影区域.

Fig. 2 Light curve of the LE large (blue), small (green) and blocked (red) FoV detectors in different energy bands (ObsID: P050129303501). The good time interval is marked with shadows.

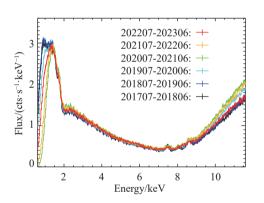

2.1 LE本底观测特征和其长期演化

图3显示了2020年6月30日之前和之后LE本底 地理分布的对比. 可以看到, LE本底随着地理经度 (lon)和地理纬度(lat)的分布没有改变, 但强度显 著增加. 图4 (左)展示了小视场探测器在同一地理 区域 $(55^{\circ} < lon < 210^{\circ}, -15^{\circ} < lat < 15^{\circ})$ 每年的 本底能谱. 可以看到, 能谱在低能端变化不明显, 而在高能端则表现出较明显的演化. 其中前4 vr, 高能端的本底水平由于设备辐照损伤而逐渐增加 (细节见下文); 从第5年开始, 高能端的本底水平则 由于卫星轨道上荷电粒子水平的下降而下降. 本 底能谱上的各种谱线,由于等值宽度较低并且随 LE能量分辨率的下降而持续变宽, 从而越来越不 显著直到难以目测,有关本底谱线(如:能量,展 宽)以及探测器的详情可参考慧眼-HXMT在轨运 行和标定方面的工作[26]. 正如地面模拟[22]和先前在 轨观测所证明的, LE本底可以简化为低能段主导 的弥散X射线本底和高能段主导的粒子本底. 因 此,图3所示的两个地理分布之间的差异主要是由

于高能段的变化. 图4 (右)显示了全遮挡探测器前6 yr的本底能谱,结果与小视场探测器的结果一致. 正如Zhang等人所述^[22], 慧眼-HXMT的本底可以由各种入射产生. 入射后立即记录的本底称为瞬时本底,而入射后长时间记录的本底(小时至月)称为延时本底. 值得注意的是,由CXB和宇宙射线质子引起的本底都是瞬时本底. LE本底光变曲线在前6 yr内变化很小. 最明显的特征是低能段的计数率稳定,而在高能段受地磁场的显著调制,这也在图2中显示出来.

LE全遮挡探测器的本底能谱形状不随地理位置而改变,并可以用来表征小视场探测器的粒子本底能谱形状^[17]. LE本底模型正是利用了这一特性来提供简单可靠的本底估计. 尽管LE本底在前6yr内有所演化,但变化并不十分显著(图3). 从图4可以看出,小视场和全遮挡探测器具有类似的演化趋势,即随着在轨时间的增加,能谱能量范围的下限变得更高,计数率也随之增加. 对于LE探测器,大信号可以同时记录在多个像素中的几个分

裂事件中. 然而, 只有高于一定阈值的事件才会被 记录并参与后续的分裂事件重建. 例如, 能量为 E的大信号可以记录为两个能量为E₀和E₁的信号 $(E_0 + E_1 = E)$. 如果 E_1 小于阈值, 这个大信号将 被视为能量为 E_0 的单事件. 随着LE探测器辐照损 伤的增加, 噪声信号的分布变得更广. 为了消除噪 声信号对工作能量带来的影响, 阈值也被调整得 更高. 这将提高LE探测器的低能限, 如图4中能谱 的低能段所示. 此外, 在阈值调整前可以记录并参 与分裂事件重建的小信号,在此之后将不会超过 阈值,即在阈值调整后,之前可以重建的双事件将 不再被重建. 随着阈值的提高, 更大比例的双事件 将不会被重建, 而会被视为能量更低的单事件. 如 图4所示,本底能谱在前4 vr的演化趋势是高能端 每年向左移动. 因此, 前4 yr LE高能端本底的增 长趋势本质上是LE探测器辐照损伤的结果. 此外, 全遮挡探测器在高能段的能谱可能会与超阈信号 峰混合, 因此本底模型中全遮挡探测器的有效使 用能段也需要做相应调整.

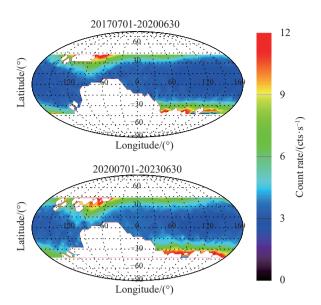


图 3 2020年6月30日之前(上图)和之后(下图)的LE小视场 探测器本底的地理分布

Fig. 3 Geographical distributions of the background of LE small FoV detectors before (top) and after (bottom) on 30 June 2020

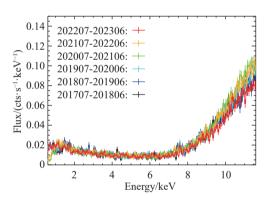


图 4 慧眼-HXMT在轨运行以来LE每年的本底能谱(左: 小视场; 右: 全遮挡)

Fig. 4 Spectra of the LE small (left) and blocked (right) FoV detectors for every year since Insight-HXMT operation in orbit

2.2 LE本底模型

本底模型的有效性需要被考查,因为这对于科学分析至关重要.按照早先发展的方法^[17],我们对每次空天区观测进行本底估计.图5显示了一个本底能谱估计的例子.对于每一年,本底模型的参数都会更新以保持本底估计的准确性,然后对本底模型的系统误差进行了考察.图6显示了自慧眼-HXMT发射以来每年2-10 keV之间不同能量段的

系统误差,结果显示与发射初期两年相比,系统误差并未发生显著变化,即本底模型是稳定的,能够给出准确的本底估计.然而,由于1.5 keV左右的数据经常受到电子噪声的影响,检测阈值被调高,因此本文仅给出了2 keV以上的系统误差.

3 中能X射线望远镜

如表1所示, ME是一台探测能段5-40 keV的

准直望远镜, 总几何面积为952 cm², 其由3个机箱 共54个探测器组成,每个探测器具有32个Si-PIN像 素. 每个机箱均包含18个探测器, 其中15个具有小 视场准直器、两个具有大视场准直器,还有一个 具有全遮挡准直器用于本底估计. ME本底特征在 高能段与LE有一些相似之处, 尤其是光变曲线特 征和地理分布. 然而, 不同本底成分的比例差异很 大, 在整个探测能段内粒子本底占主导地位[19, 22]. 图7分别展示了ME本底在第1年和第6年的地理分 布对比. 可以看出, 第6年的ME本底略高于第1年. 在SAA附近的区域(330° < lon < 360°, 0° < lat <30°. 本底明显高于具有相似纬度的其他大多数地 区. 这表明, 当卫星经过高粒子通量区域(例如 SAA)时, ME本底首先会上升, 然后随时间下降, 即ME本底具有延时成分. 通过对比升轨(卫星轨 迹由南向北)和降轨态(卫星轨迹由北向南)本底的 地理分布(图7), 我们发现ME本底具有相对较强的 短时标延时成分,并且导致ME本底的长时间演化. 为了提高本底估计的准确性,本底模型的参数应 该针对每一年给出.

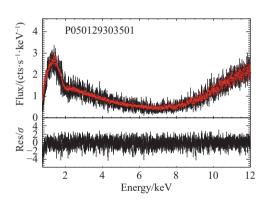


图 5 LE本底估计实例. 上图: 空天区观测能谱(黑)和估计本底(红). 下图: 以误差(σ)为单位的残差.

Fig. 5 An example of the LE background estimation. Top: spectrum of a blank sky observation (black) and the estimated background spectrum (red). Bottom: residuals in terms of errors (σ) .

3.1 ME本底观测特征和其长期演化

ME本底能谱在不同的地磁截止刚度范围内, 形状几乎保持不变. 但本底水平差异非常大, ME

本底与地磁截止刚度之间呈现明显的反相关性[19]. ME本底的演化,特别是银线的强度需要被仔细处 理, 以确保本底模型的准确性, 图8展示了ME小视 场探测器在6个能段的本底光变,可以看到ME本 底光变曲线表现出明显的轨道调制. 光变曲线中 有一个明显的峰值, 由粒子事件引起, 通常出现在高 纬度地区, 相应的时间被排除在GTI之外. 图9 (a)-(b)显示了地理区域(340° < lon < 350°, 5° < lat < 15°)内小视场探测器本底能谱的变化. 首先 可以看到升轨态的本底水平比降轨态要高得多, 这是由短衰减时标的延时本底成分导致, 因为在 这个地理位置上卫星刚离开SAA. 在前5 vr. 由于 在轨运行的累积效应, ME本底水平随时间缓慢增 加,这是弱延时成分的累积效应.在第6年本底水 平有所下降,这是卫星轨道上荷电粒子水平下降 的原因. 而银线的中心随时间也有所偏移, 表明能 量-能道关系发生了变化. 图9 (c)-(d)显示了全遮 挡探测器的能谱演化. 银线的位置没有发生显著 偏移, 这表明全遮挡探测器受到的辐射损伤比小 视场探测器要小.

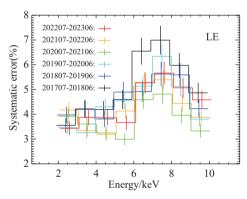


图 6 LE本底模型在2017年7月至2023年6月期间的系统误差

Fig. 6 Systematic errors of the LE background model from July 2017 to June 2023

3.2 ME本底模型

我们在先前的工作中构建了ME本底模型和相应的数据库^[19].由于ME本底能谱形状随地理位置变化较小,但变化程度与LE相比则不可忽视,因此本底模型必须考虑ME每个探测器在每个地理

位置的本底情况. 在每次本底估计中, 我们首先使用数据库得到卫星经过的每个地理位置上ME小视场和全遮挡探测器的初步预测本底能谱, 然后使用全遮挡探测器的观测结果进行进一步校正.

ME数据库产生了每个地理位置的按时间平均归一化的本底能谱,同时可以通过全遮挡探测器确定当时的粒子强度,并用于校正本底模型.

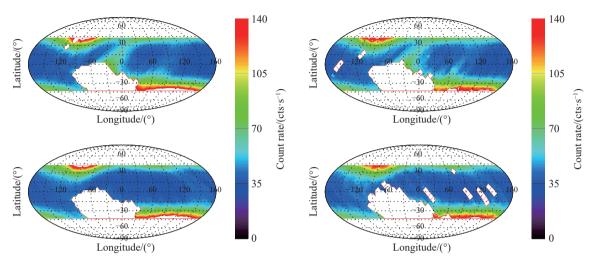


图 7 左: 第1年ME小视场探测器本底强度的地理分布(上: 升轨态, 下: 降轨态). 右: 同左图但为第6年.

Fig. 7 Left: geographical distributions (top: ascending orbital phase, bottom: descending orbital phase) of the background intensity of ME small FoV detectors in the first year. Right: same as the left panel but for the sixth year.

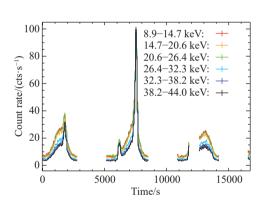


图 8 ME小视场探测器6个能段的本底光变 (T0 = 2022-06-18T07:15:53.5)

Fig. 8 Light curves of the background observation by the ME small FoV detectors in six energy bands (T0=2022-06-18T07:15:53.5)

每一年度, 所有空天区观测的本底都由相应年份的模型参数进行估计. 图10是ME一次空天区观测的本底估计示例. 对所有的本底估计残差进行统计分析, 可得到每个能量段本底估计的系统误差^[19]. 图11显示了每一年中6个能量段的系统误

差. 结果显示,系统误差在前5 yr没有显著增长趋势. 其中10-15 keV能量段的系统误差相对较大,平均值约为2%,而10-40 keV能量段的系统误差约为1.6%. 而在第6年, 15 keV以上的系统误差有所上升,但各能段均小于2.5%,这表明ME本底模型仍然可靠.

4 高能X射线望远镜

HE具有18个NaI (Tl)/CsI (Na)复合晶体探测器(编号为DetID = 0,1,2,...,17),这些探测器被18个反符合探测器(anti-coincidence detector, ACD)包围,用于主动本底屏蔽.在这18个探测器中,15个具有小视场,两个具有大视场,一个用于本底估计的全遮挡视场.地面模拟表明,NaI和CsI晶体可以被慧眼-HXMT轨道周围的荷电粒子活化,活化晶体的放射性衰变是HE本底的主要来源.由于卫星在轨道上连续运行,HE探测器中的晶体被持续活化.在卫星发射运行的第1年本底水平显著上升,然后上升趋势逐渐放缓^[20-21].

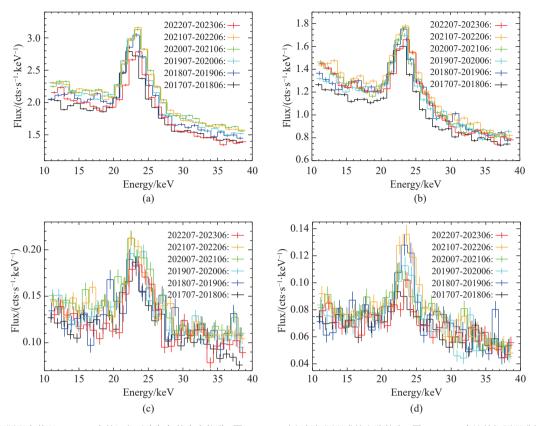


图 9 ME探测器自慧眼-HXMT在轨运行以来每年的本底能谱. 图(a)-(b): 小视场探测器升轨和降轨态. 图(c)-(d): 全遮挡探测器升轨和降轨态.

Fig. 9 Background spectra of the ME detectors for every year since *Insight*-HXMT operation in orbit. Panels (a)–(b): small FoV detector in ascending and descending orbital phase. Panels (c)–(d): blocked FoV detector in ascending and descending orbital phase.

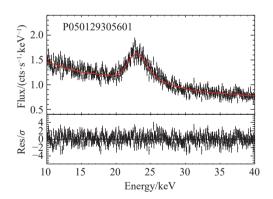


图 10 ME本底能谱估计实例. 上图: 空天区观测能谱(黑)和估计 本底(红). 下图: 以误差(σ)为单位的残差.

Fig. 10 An example of the ME background estimation. Top: spectrum of a blank sky observation (black) and the estimated background spectrum (red). Bottom: residuals in terms of errors (σ) .

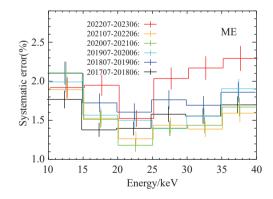


图 11 ME本底模型在2017年7月至2023年6月期间的系统误差

Fig. 11 Systematic errors of the ME background model from July 2017 to June 2023

4.1 HE本底观测特征和其长期演化

图12显示了第1年和第6年HE本底的地理分

布. 可以看到, 总体分布的差异很小, 但第6年的本底计数率显著高于第1年. 与LE和ME的本底不同, HE的本底由于晶体被荷电粒子活化从而被延时成分所主导. 因此, 即使在同一地理位置, 上升和下降轨道阶段的本底也会有很大不同. 图13显示了每年在上升和下降轨道阶段地理位置的能谱. 在(lon, lat) = (345°, 15°)的能谱显示在子图(c)和(d)中. 在升轨态, 当卫星经过SAA时, 探测器的晶体严重活化. 由于没有足够的时间衰变, 因此本底水平相对较高. 然而, 在降轨态的本底较低. 由于卫星自上一次经过强荷电粒子区域已经过去很长时间, 因此本底主要由长时标衰变成分主导. 不同地理位置的HE本底能谱显示出长期演化. 与其他子

图中显示的结果相比,子图(d)中显示的演化不太显著.这是因为卫星刚刚经过SAA,因此本底的很大比例是由短时标成分贡献的.此外,SAA的荷电粒子强度在6 yr内没有发生显著变化.如前人工作所述^[20-21],HE本底的能谱由各种发射线组成,这些发射线是探测器与高能粒子相互作用引起的.从图13可以看出,能谱形状在6 yr内保持稳定.图14显示了HE在6个不同能段的空天区观测光变曲线.对于每个能段,当卫星刚经过SAA时,本底强度上升到较高水平,然后逐渐衰减并显示显著的地磁调制.不同能段之间也存在差异,因为本底由许多具有不同比例、能谱形状和典型变化时标的成分组成.

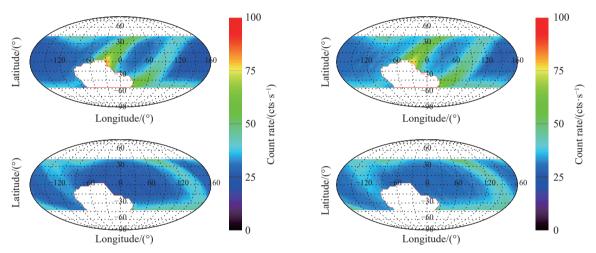


图 12 左: 第1年HE本底强度(DetID = 0 & E > 30 keV)的地理分布(上: 升轨态, 下: 降轨态). 右: 同左图但为第6年.

Fig. 12 Left: Geographical distributions (top: ascending orbital phase, bottom: descending orbital phase) of the HE background intensity (DetID = 0 & E > 30 keV) in the first year. Right: same as the left panel but for the sixth year.

4.2 HE本底模型

基于HE本底特征, 我们发展了HE本底模型^[18]. 其原理与ME相似, 但更为复杂. 为了获得任何地 理位置和任何时间的本底, 我们构建了以时间为 自变量的经验函数来描述HE本底的长期演化.

可以利用轨道参数和观测时间得到本底的初步估计,并使用全遮挡探测器的数据做进一步校正.因此,HE的本底估计严重依赖于本底长期演化的数学描述,即经验函数的准确性对本底估计至关重要.图15显示了46-74 keV 6个不同地理位置本底计数率的长期演化,展示出不同地磁截止刚度和不同SAA延时本底的影响.对于每个能道,

本底的长期演化可以由包含几个斜率的折线描述. 拟合曲线是由不同拐折时间的折线在这个能量范围内合并而成的, 因此显示出平滑的过渡而没有明显的跃变. 值得注意的是, 我们选择折线函数来描述本底计数率随时间的长期演化. 虽然其他函数可能也可以接受, 但折线已经可以很好地描述观测数据. 正如地面模拟所预测[20-21], 活化的同位素导致在每次经过SAA后本底计数率迅速衰减, 并随着在轨运行天数的增加而长期积累. 这种积累在发射后的初始时期迅速上升, 并在数百天后变得缓慢, 因为长半衰期同位素并不占主导地位. 这种预测的长期演化与图15中显示的观测结果一致.

值得注意的是, HE本底在第6年呈现下降趋势, 这

是太阳活动增强导致轨道大气密度升高的结果.

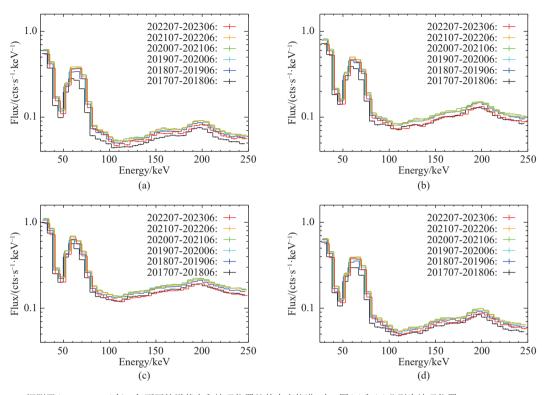


图 13 HE探测器(DetID = 0)每一年不同轨道状态和地理位置处的本底能谱. 左: 图(a)和(c)分别为地理位置(lon, lat) = $(140^\circ, 0^\circ)$ 和 $(345^\circ, 15^\circ)$ 升轨态. 右: 同左图但为降轨态.

Fig. 13 Spectra of the HE background (DetID = 0) for every year with different orbital phases and geographical locations. Left: panels (a) and (c) are these for $(lon, lat) = (140^{\circ}, 0^{\circ})$ and $(345^{\circ}, 15^{\circ})$ in ascending orbital phase. Right: same as the left panels but for the descending orbital phase.

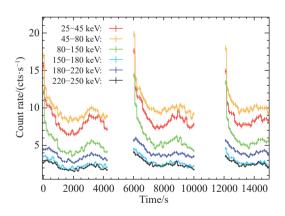


图 14 HE (DetID = 0)在6个能段上的本底光变曲线 (T0 = 2023-03-13T00:51:36.5)

Fig. 14 Light curves of the HE (DetID = 0) background observation in six energy bands (T0 = 2023-03-13T00:51:36.5)

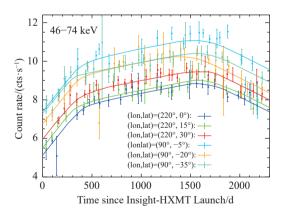


图 15 HE探测器(DetID = 0)在6个不同地理位置处46-74 keV能量 范围的长期本底演化

Fig. 15 Long-term background evolution of the HE (DetID = 0) in 46–74 keV at six geographical locations

利用本底模型,可以对所有空天区观测进行本底估计.图16是对一个空天区观测的本底估计的示例.按照先前工作中介绍的方法^[18],可以得到不同能量段的系统误差.图17展示了8个能量段在每一年中的系统误差.结果显示,每一年的平均系统误差均小于3%,与卫星运行前两年的结果没有显著差异,HE本底模型仍然有效.

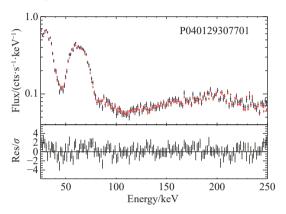


图 16 HE本底能谱估计实例. 上图: 空天区观测能谱(黑)和估计本底 (红). 下图: 以误差(σ)为单位的残差.

Fig. 16 An example of the HE background spectrum estimation. Top: spectrum of a blank sky observation (black) and the estimated background (red). Bottom: residuals in terms of errors (σ) .

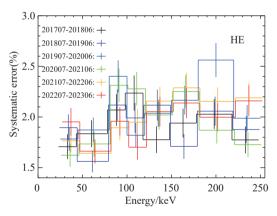


图 17 HE本底模型在2017年7月至2023年6月期间的系统误差

Fig. 17 Systematic errors of the HE background model from July 2017 to June 2023

5 总结与结论

慧眼-HXMT在轨运行6 yr后, 与在轨运行初

期相比, 3个望远镜的本底表现出不同的演化趋势. 本底的主要特征(光变、能谱和长期演化)都与设计预期一致.

LE探测器为了解决辐照损伤带来的问题,进行了一系列操作,这些操作也造成了LE探测器的本底变化.例如调高探测阈值的下限以避免噪声信号,因为其分布随着LE辐照损伤的增加而变得更宽.此外,本底能谱中发射线的持续变宽是LE能量分辨率下降的结果.随着在轨运行时间的增加,ME本底水平受到弱延时成分的累积影响而增加.此外,低能段的ME本底也可能受到一些像素低能噪声的影响. HE探测器的晶体持续活化,这是其本底强度随时间显著增加的原因. 在前5 yr内,HE本底增长趋势逐渐放缓,并呈现出饱和的行为;而在第6年HE本底呈现下降趋势,这是太阳活动增强导致轨道大气密度升高的结果. 不同能量的本底演化不一致,这意味着某一地理位置的本底谱形状也随时间演化.

尽管LE和ME本底的时间演化特征不显著,为了保持本底估计的准确性,每年都需要进行本底模型参数的更新.对于HE本底模型,本底随时间的演化从模型构建伊始就已经考虑在内.统计分析显示,慧眼-HXMT运行的前6 yr内, 3个望远镜的系统误差变化很小,因此本底模型仍然有效可靠.

正如先前的工作所述^[17],使用空天区观测构建的LE本底模型可以有效估计粒子本底和由CXB引起的弥散X射线本底. 因此, 可以用于高银纬的定点观测($|b| \le 10^\circ$). 为了准确估计低银纬区域的弥散本底, 应该在LE本底估计中使用银道面扫描得到的弥散X射线本底^[27].

值得注意的是, 3个望远镜目前的本底模型在很大程度上依赖于全遮挡探测器. 因此, 全遮挡探测器至关重要, 特别是对于只有一个全遮挡探测器的HE. 这对本底估计构成潜在的风险, 因为缺乏足够的安全冗余度. 因此, 必须提前计划一种不依赖于全遮挡探测器的本底估计替代方案, 例如使用ACD和PM作为LE和ME本底估计的即时粒子监测器. 对于HE, 已经建立了一个不依赖于全遮挡探测器的参数化本底模型^[28]. 通过考虑导致HE本底的各种物理因素, 成功构建了考虑这些物

理过程的数学模型.

致谢 本项工作利用了中国国家航天局(CNSA)和中国科学院(CAS)资助的慧眼-HXMT任务的数据.

参考文献

- [1] Zhang S N, Li T P, Lu F J, et al. SCPMA, 2020, 63: 249502
- [2] Chen Y, Cui W, Li W, et al. SCPMA, 2020, 63: 249505
- [3] Cao X, Jiang W, Meng B, et al. SCPMA, 2020, 63: 249504
- [4] Liu C, Zhang Y, Li X, et al. SCPMA, 2020, 63: 249503
- [5] Zhang Y, Ge M Y, Song L M, et al. ApJ, 2019, 879: 61
- $[6]\$ Li C K, Lin L, Xiong S L, et al. NatAs, 2021, 5: 378
- [7] Luo Q, Liao J Y, Li X F, et al. JHEAp, 2020, 27: 1
- [8]~ Sai N, Liao J Y, Li C K, et al. JHEAp, 2020, 26: 1
- [9] Strüder L, Briel U, Dennerl K, et al. A&A, 2001, 365: 18
- [10] Turner M J L, Abbey A, Arnaud M, et al. A&A, 2001, 365: 27
- [11] Garmire G P, Bautz M W, Ford P G, et al. SPIE, 2003, 4851: 28

- [12] Frontera F, Costa E, dal Fiume D, et al. AA&S, 1997, 122: 357
- [13] Frontera F, Costa E, dal Fiume D, et al. SPIE, 1997, 3114: 206
- [14] Rothschild R E, Blanco P R, Gruber D E, et al. ApJ, 1998, 496: 538
- [15] García J A, McClintock J E, Steiner J F, et al. ApJ, 2014, 794: 73
- [16] Garcí, J A, Grinberg V, Steiner J F, et al. ApJ, 2016, 819: 76
- [17] Liao J Y, Zhang S, Chen Y, et al. JHEAp, 2020, 27: 24
- [18] Liao J Y, Zhang S, Lu X F, et al. JHEAp, 2020, 27: 14
- [19] Guo C C, Liao J Y, Zhang S, et al. JHEAp, 2020, 27: 44
- [20] Li G, Wu M, Zhang S, et al. ChA&A, 2009, 33: 333
- [21] Xie F, Zhang J, Song L M, et al. Ap&SS, 2015, 360: 47
- [22] Zhang J, Li X B, Ge M Y, et al. Ap&SS, 2020, 365: 158
- [23] Alcaraz J, Alvisi D, Alpat B, et al. PhLB, 2000, 472: 215
- [24] Alcaraz J, Alpat B, Ambrosi G, et al. PhLB, 2000, 484:
 10
- [25] Lu X, Liu C, Li X, et al. JHEAp, 2020, 26: 77
- [26] Li X B, Li X F, Tan Y, et al. JHEAp, 2020, 27: 64
- [27] Jin J, Liao J Y, Wang C, et al. ApJS, 2022, 260: 42
- [28] You Y, Liao J Y, Zhang S N, et al. ApJS, 2021, 256: 47

The First 6-year In-orbit Background of Insight-HXMT

LIAO Jin-yuan

(Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049)

Abstract This paper reviews the in-orbit background of the Hard X-ray Modulation Telescope (HXMT) over the first six years, including the geographical distributions, spectral and temporal characteristics, as well as the long-term evolution of the in-orbit background of each payload. In addition, we also review the estimation methods for the in-orbit background of each payload of *Insight*-HXMT, providing a comprehensive introduction to the strategies for background estimation and the accuracy of the estimation. Overall, the in-orbit background of *Insight*-HXMT is consistent with expectations, and the background models for each payload can reliably estimate the spectrum and light curve of the in-orbit background.

Key words space vehicles: instruments, methods: data analysis, X-rays: background